
Temporal Lensing and its Application in
Pulsing Denial-of-Service Attacks

Ryan Rasti∗†�, Mukul Murthy∗, Nicholas Weaver∗†, Vern Paxson∗†
∗UC Berkeley, †ICSI, �VMware

Abstract—We introduce temporal lensing: a technique that
concentrates a relatively low-bandwidth flood into a short, high-
bandwidth pulse. By leveraging existing DNS infrastructure,
we experimentally explore lensing and the properties of the
pulses it creates. We also empirically show how attackers can
use lensing alone to achieve peak bandwidths more than an
order of magnitude greater than their upload bandwidth. While
formidable by itself in a pulsing DoS attack, attackers can also
combine lensing with amplification to potentially produce pulses
with peak bandwidths orders of magnitude larger than their own.

I. INTRODUCTION

When conducting network-layer denial-of-service (DoS)
flooding, attackers can either send traffic directly towards
their victim, or bounce it off intermediary reflectors by spoof-
ing the victim’s address or otherwise sending the reflectors
queries that will induce them to send follow-on traffic to the
victim [16]. If an attacking system can send at a rate of
ψ bytes/sec, then for direct attacks clearly the peak load it
can impose on the victim is also ψ. In the second case, the
reflectors might provide a factor k of amplification, depending
on the relationship between the queries sent to the reflectors
and the replies these result in the reflectors transmitting to the
victim.

In the reflected case, it might thus appear self-evident that
the peak load an attacking system can impose on the victim
cannot exceed k · ψ. Surprisingly, this turns out not to be
the case. In this paper we introduce temporal lensing, which
(a) exploits existing infrastructure (reflectors) in the novel way
of concentrating a flood in time rather than simply mirroring
it, and (b) can from these pulses produce a debilitating degra-
dation of throughput for the victim’s operational TCP traffic,
such as explored in prior work on “shrew” and “pulsing”
attacks [11], [14].

Previous work on pulsing attacks has left a significant
opportunity for improvement: a majority of the attacker’s
bandwidth lies unused in between pulses. Therein lies the
question of how to send packets during these idle times but
have these packets still arrive at the victim all in a single
burst. Doing so should allow an attacker to do significantly
better than either brute-force flooding or pulsing attacks could
do alone.

We draw an analogy to the military tactic “Time on Target”
[10] for coordinating artillery fire. Using synchronized clocks
and estimates of projectile flight times, a coordinated artillery
battery can fire from different locations but have all their
shells hit the target simultaneously. This technique played a

(a) At t = 0 ms, the attacker sends one packet towards
reflector 1

(b) At t = 70 ms, the first packet is about 60% along its
path to the victim and the attacker sends another packet
to reflector 2

(c) At t = 110 ms, both packets arrive at the victim

Figure 1: Attack illustration. Paths through reflectors 1 and 2
have attack path latencies of 110 and 40 milliseconds re-
spectively. The attacker sends at a rate of 1 packet-per-70-
ms, but concentrates the flow such that two packets arrive
simultaneously at the victim. For an instant, the attacker has
significantly increased the effective attack bandwidth at the
victim.

key role in the efficacy of American artillery strikes during
World War II [20].

In a more sophisticated variant, “Multiple Rounds Simulta-
neous Impact” [12], a single ordnance makes multiple rounds
rendezvous at the target by varying the angle of fire, charge,
and thus flight time. By varying projectile paths, the artillery
can make more shots arrive at the victim in one period of time

than it can send in that same amount of time.
To accomplish a similar feat, we leverage the wide range of

paths and latencies on the Internet. If an attacking system can
schedule its sending in such a way that it first sends packets
that will take longer to arrive, and later sends those that take
less time to arrive, the packets can all rendezvous at the victim
within a small window of time; the attack compresses the
original transmission into a sharp pulse of traffic that can
completely fill the buffer at the victim and induce packet
loss and thus congestion response. By repeating such pulses
periodically, the attacker can realize reduction of quality [7]
such as that resulting from a shrew attack [11].

Clearly, if the attacker sends directly to the victim, each
packet will take roughly the same amount of time to reach
the victim, since in general they will travel along the same
(or at least similar) paths. Reflectors introduce the ability to
obtain variable attack path latencies: the time from attacker
through reflector to victim. Each reflector the attacker employs
potentially introduces a new path for attack traffic and thus
a different attack path latency. Figure 1 illustrates a simple
example.

We term this technique temporal lensing, or simply lensing,
as reflectors can temporally concentrate packets much like a
lens focuses light. When describing how the attack works,
we use the term concentration rather than amplification, as
the former more directly matches the underlying dynamics,
and the latter already has common usage in describing an
orthogonal attack (which a lensing attack could also include).

After reviewing related work, we develop the attack in three
main parts: determining attack path latencies through resolvers
to the victim (§ III); building a sending schedule to create max-
imal lensing from these latencies (§ IV); and characterizing
the efficacy of the attack (§ V). We experimentally assess an
implementation of lensing (§ VI), and then address extensions
(§ VII) and assess potential defenses (§ VIII).

II. RELATED WORK

Kuzmanovic and Knightly [11] first described the concept
of bursty, low average bandwidth pulses as “shrew” attacks.
The attack aims to send enough packets in a short duration
to cause a TCP retransmit timeout (RTO) in clients, and then
induces additional RTOs with each subsequent, periodic pulse.
They noted that due to their low average bandwidth, such
attacks should prove harder to detect than traditional flooding.
Their evaluation demonstrated that such attacks can effectively
reduce throughput by an order of magnitude or more, and two
potential defenses—use of RED to identify shrew pulses, and
randomization of RTOs to avoid synchronization with subse-
quent pulses—require either a lengthy measurement period or
loss of throughput in the absence of attack.

Zhang, Mao, and Wang explore shrew attacks with a focus
on disrupting BGP [24]. They also discuss using multiple
attackers to initiate a shrew attack, similar to lensing. How-
ever, attackers initiate lensing from a single host and use
reflectors—entities not under the attacker’s direct control—as
the attack vector. In addition, lensing enables full utilization

of an attacker’s uplink bandwidth, while simply distributing
a shrew attack still leaves the attacker machines idle most of
the time.

Luo and Chang [14] generalized the idea of shrew attacks to
disruption of TCP congestion control. Specifically, they also
considered the AIMD congestion control response, showing
that even without retransmission timeouts, such attacks can
also severely degrade TCP flows. Guirguis et al. [7] further
generalized low average bandwidth attacks as a type of RoQ
(reduction of quality) attack, noting that pulsing exploits
transients in a system (e.g., congestion response) instead of
steady state capacity (e.g., victim’s bandwidth).

While pulsing DoS boasts impressive theoretical and exper-
imental efficacy, it appears to have seen little use in practice;
perhaps attackers find little need to render their attacks more
difficult to detect. If so, then they are better off with direct
flooding: since senders are limited to their uplink bandwidth
in creating pulses, simple pulsing cannot perform better than
direct flooding in terms of damage inflicted. However, the
idle time between pulses indicates room for improvement. In
particular, our development of lensing aims to improve flood-
ing efficacy rather than stealth, which may lead to attackers
becoming more inclined to use it.

Kang, Lee, and Gligor [9] introduce another variant
on stealthy, low-bandwidth DoS, called “Crossfire” attacks.
Crossfire attacks use a set of attackers (presumably bots in
a botnet) to flood at low bandwidths and has these flows
converge at a few critical links to cut off the victim from
the Internet. The result is a stealthy attack in which any given
bot sends at a low-average rate, but the flows overflow a few
critical links in a way not obvious to the victim or routers.
Lensing shares this idea of concentration, but instead can be
used to concentrate packets from a single flow temporally to
create pulses as in a pulsing DoS attack on TCP congestion
control. Further, as noted above, its primary goal is to buy
more DoS efficacy for an attacker, rather than stealth. The-
oretically, however, the two attacks could be combined (i.e.,
using lensing to better degrade the throughput on the target
links).

Paxson [16] describes the role of reflectors in DoS attacks
as amplifying the flooded traffic and helping attackers evade
detection. He also notes the natural use of open DNS resolvers
as reflectors. Our attack prototype takes advantage of this
last fact and the abundance of such resolvers (estimated to
be in the tens of millions [18]). However, we use reflectors
in a new way, instead employing them to concentrate the
arrival of packets at the victim, much like a lens focuses light.
Thus, lensing works in a fashion complementary to traditional
amplification attacks; it is not itself a way to amplify traffic
volume.

Our approach requires the ability to calculate latencies
between each reflector and the victim, an instance of the
general problem of measuring latencies between arbitrary
Internet end hosts, which has received significant study [4],
[6], [15], [19], [21]. For our purposes, we leverage Gummadi
et al.’s King [8], which offers the impressive advantage that

Figure 2: The operation of King (reprinted with permission),
with the relevant actors for lensing added in red.

it can approximate the latency between arbitrary Internet
hosts without requiring any additional infrastructure beyond
what DNS already provides. King works by finding DNS
servers close to the target hosts and estimating distances using
recursive DNS queries. King suits our task particularly well
because it has the greatest accuracy when either (or both) hosts
are DNS servers. As a recursive protocol, DNS naturally lends
itself to use in reflection.

Schomp et al. [18] estimate the number of open DNS
resolvers in the tens of millions, with many running on (often
outdated) commodity hardware. They note that many such
resolvers are ephemeral, persisting at a given address on the
order of days to weeks. In addition, they describe how many
resolvers do not iterate the DNS hierarchy themselves, but
instead forward the task to auxiliary resolvers. TurboKing
[13] incorporates the possibility of such forwarders to improve
its accuracy. As explained below, because when using open
resolvers for lensing attacks the attack follows the same path as
that used for determining latencies, such DNS nuances should
not affect its precision.

III. ESTIMATING ATTACK PATH LATENCIES

Conducting the attack using a given set of reflectors requires
us to first estimate each reflector’s attack path latency, for
which we employ the technique used by King. King operates
by issuing recursive DNS queries between two DNS servers
located close to the end servers in question. Figure 2, taken
from [8], illustrates its operation, where we have overlaid
labels representing the attacker, victim, and reflector, as used in
our attack. With a single recursive query, an attacker can form
an estimate for the attack path RTT by taking the difference
in time between when the attacker sends a query to when the
attacker receives a response.

King must address two conflicting caching issues. First,
it “primes” the resolver so that it caches the fact that the
victim is authoritative for its domain (i.e., cache the NS

record). Doing so prevents the resolver from iterating through
the DNS hierarchy for subsequent queries. Second, to obtain
accurate measurements, the attacker must issue queries for
different subdomains of the victim’s domain (foo.bar in
the example), lest the attacker’s queries hit the resolver’s cache
and short-circuit the follow-on query (i.e., query for a different
A record). By sending queries for distinct subdomains, each
will result in sending the entire chain of packets 1–4 shown
in Figure 2.

Lensing does not fundamentally require the use of recursive
DNS resolvers as reflectors, but they serve very well in
this role. By their recursive nature, they perform reflection
naturally, and because of their direct co-location with the
reflector, using them for measurement provides accurate attack
path latency estimates, particularly so if we target the victim’s
DNS server with the attack.1 Given an estimate of the attack
path RTT, we then halve it to obtain the attack path latency.
Halving the RTT might not in fact give an accurate estimate,
due to the prevalence of asymmetric routing in the Internet.
However, our positive experimental results on lensing in § VI
experimentally validate this approximation.2

Short-term variation. A basic question for the accuracy of
a lensing attack concerns the stability of attack path latency
measurements over short periods of time. In particular, it may
take a few minutes just to measure latencies to all of the
reflectors. To investigate how attack path latencies vary over
such time periods, we used a random sample of 44 resolvers
from a public list [1] of a few thousand to measure the path
latency through each every two minutes.3 Figure 3 provides
some examples of what path latency variation can look like
over time. We show three cases, deemed (from the attacker’s
perspective) “good” latency variation, “bad” variation, and
seemingly-good-but-not. In particular, the resolver in the third
graph might at first appear good because it exhibits few
timeouts and a fairly consistent latency over short periods of
time. Over longer time periods, however, it appears to undergo
repeated routing changes that abruptly alter the attack path
latency. Using such a reflector could lead to packets sent it
missing the pulsing window.

We can robustly characterize a given reflector’s latency
variation using the interquartile range (IQR) of the distribution
of its measurements, i.e., the difference between its 75th and
25th percentiles. We find that misleading resolvers are fairly
rare. For example, the one in the third plot had an IQR of
122 ms, while more generally we find that nearly half our
resolvers had an IQR of under 12 ms.

In summary, for some resolvers, the attacker must either
perform latency measurements immediately before launching

1The reader may correctly note that pulsing DoS attacks (which attack TCP
congestion control) will likely have little impact on a UDP-based service such
as DNS. We defer discussion of estimating attack path latencies to TCP-based
hosts to § VII-A.

2It turns out that a constant error term (constant over all paths) in the
approximation (i.e., Latency = 1

2
· RTT + ε) will still enable pulsing (see

§ VII-A).
3Here and throughout the remainder of the paper, our measurements always

included warming DNS caches as necessary.

Figure 3: Two “good” resolvers (Google public DNS and Eindhoven University of Technology) with minimal path latency
variation, an obviously “bad” resolver with high path latency variation, and a resolver that appears good over small samples
of time but is actually bad for lensing, respectively. We took samples 2 min apart, and show timeouts with marks along the
top of the plot.

an attack, or draw upon a longer period of statistics to identify
the resolver as problematic. However, given that most resolvers
do not suffer from widely varying latencies, even if the attacker
does not account for misleading resolvers and simply assumes
every resolver that appears good over a short period of time is
indeed good, the efficacy of their attack will not significantly
suffer.

Long-term variation and caching. We now turn to the
degree to which attackers can fruitfully rely upon measure-
ments taken further in the past than just a short period prior
to launching an attack. An ability to use older measurements
would enable attackers to better hide the “reconnaissance”
activity necessary to set up an attack.

To this end, we used our same sample of resolvers and
sent 50 packets through each every 4 hours for 10 days.
For each resolver we computed the standard deviation of
the median latency over each flight of measurements. We
then divided these standard deviations by the mean of the
median latencies, obtaining coefficients of variation (CoV).
We found that many resolvers’ path latencies exhibit very little
variance over time, indicating an attacker could cache latency
estimates for significant periods of time. Attackers could also
compute such statistics over large groups of resolvers to
identify substantial subsets to save on a “short list” of high-
quality resolvers to employ in future attacks.

We also note that we did not find many resolvers with very
high attack path latencies (many hundreds of msec). Such
resolvers (if exhibiting low variance) would enable an attacker
to increase their overall bandwidth gain because they would
provide longer periods of time over which to send packets (and
subsequently concentrate). However, we found that most such
high latency paths also exhibited high jitter and inconsistency.

IV. BUILDING AN OPTIMAL SCHEDULE

Given path latency estimates for the reflectors, the attacker
then needs to compute a sending schedule. This schedule
divides up the sending window into a set of time slots T ,
listing for each slot which reflector the attacker should send
to in that slot. The number of slots available for the attacker

to send is a function of the attacker’s maximum bandwidth
(which determines the idle time between adjacent slots) and
the range of path latencies measured for different reflectors.

We define the pulse window (or simply window) as the
duration of the pulse as seen at the victim. In trying to create a
maximal pulse, the attacker’s goal is to maximize the expected
number of packets that land in a predetermined window.

To do so, we use a greedy algorithm to compute an optimal
schedule given an initial set of reflectors and estimates of
their corresponding attack path latencies. According to our
algorithm, at each time slot t we simply choose the reflector
that provides the highest estimated probability of landing
within the window. Absent any restrictions on how often an
attacker can employ a given reflector, we can show that this
greedy algorithm is indeed optimal (see below).

These problem statements and the ensuing proofs do not
account for distortions in the attack path latencies due to the
attack itself—such as those caused by effects of over-taxing
resolvers, or congestion caused by the attack. By distributing
the attack over geographically diverse resolvers, congestion
should rapidly decrease at points further from the victim, so in
fact self-congestion might not actually prove detrimental to the
attack. In addition, our experimentation reveals little evidence
of congestion actually inhibiting our emulated attacks.

In addition, our proofs cover the simplified case where the
attacker can freely reuse any reflector for a given time slot.
The more complex case where the attacker throttles overall use
of any given reflector does not appear to readily lend itself to
proofs of optimality.

Finally, an actual pulsing attack will consist of multiple,
evenly spaced pulses. We can construct an optimal schedule
for this scenario in a fashion similar to the single pulse case
above. At each time slot t we choose the reflector that provides
the highest estimated probability of landing in any window.
We prove optimality for this case after first addressing the
single-pulse case.

A. Proving Schedule Optimality: Single Pulse

For each time t ∈ T when we consider sending, and for
each reflector r ∈ R (the set of reflectors), let Pr(t, r) denote
the probability that if we send to reflector r at time t, the
reflected packet will land in the desired window. Note that
§ III provides estimates for this probability. We assume that
these probabilities are independent and time-invariant (for any
reflector, a given latency will occur with a given probability
regardless of when we send to the reflector, or what packets
we send at other times).

Suppose we have chosen a schedule for which at each time
t we send to reflector rt. Let X denote the random variable
representing how many packets arrive in the window. X =∑
t∈T

Xt, where

Xt =

{
1 if packet sent at t lands in window
0 otherwise.

So, E(Xt) = Pr(t, rt). Then, due to linearity of expectation,

E(X) = E(
∑
t∈T

Xt) =
∑
t∈T

E(Xt) =
∑
t∈T

Pr(t, rt).

Given this, we claim that any schedule that optimizes E(X)
must have the condition that for each t, we send to the reflector
with highest Pr(t, r) over r ∈ R. To see this, assume for
the sake of contradiction that an optimal schedule S exists
such that at time t∗ we do not send to the reflector r∗ that
yields the highest probability; instead, we send to r∗∗. By
construction, Pr(t∗, r∗) > Pr(t∗, r∗∗). Consider S′, the same
schedule as S except that at t∗, it sends to r∗. Let the expected
number of packets landing in the window of S and S′ be
E(X) and E(X ′) respectively; then the difference between
the expectation of the schedules is:

E(X ′)− E(X) =
∑
t∈T

E(X ′t)−
∑
t∈T

E(Xt)

=

Pr(t∗, r∗) + ∑
t∈T∧t6=t∗

E(X ′t)

−

Pr(t∗, r∗∗) + ∑
t∈T∧t6=t∗

E(Xt)

= [Pr(t∗, r∗)− Pr(t∗, r∗∗)]

+
∑

t∈T∧t6=t∗

E(X ′t)−
∑

t∈T∧t6=t∗

E(Xt)

= Pr(t∗, r∗)− Pr(t∗, r∗∗)

However, we already established that this last term is greater
than 0. Thus, E(X ′) − E(X) > 0 and S′ provides a better
schedule than S, which contradicts our assumption that S is
optimal.

B. Proving Schedule Optimality: Multiple, Evenly-spaced
Pulses

We now extend the problem to scheduling optimally using
multiple, evenly-spaced windows. For defining “optimal” in
this case, we consider two intuitive notions:
• Having the largest amount of packets land in any pulse

(that is, maximize the sum of packets in all pulse win-
dows)

• Having the largest possible consistent pulses
We present an algorithm that trivially accomplishes the first

and then show that it also accomplishes the second.
The algorithm proceeds as follows. For each time slot t ∈ T ,

choose the reflector with the highest probability of landing in
any window. The justification that this satisfies the first criteria
follows trivially from the previous proof, and we omit it here.

To see how the algorithm fulfills the second definition,
we claim that an attacker can repeatedly execute an optimal
schedule with the same period as the attack. Consider an
arbitrary time slot ti and the time slot p time units in the future,
ti + p, where p represents the period. Label the jth window
wj . Suppose a packet sent at ti to reflector r has probability
Prwj (ti, r) of landing in window wj . Then, at ti+p, reflector
r has probability Prwj+1(ti+p, r) = Prwj (ti, r) of landing in
window wj+1. In steady state, we can express the probability
that a packet sent at ti to r lands in any window as:

(1)
∞∑

j =−∞
Prwj

(ti, r) =

∞∑
j=−∞

Prwj+1
(ti + p, r)

Thus, the probability that it lands in any window is the same p
time units in the future. Since our optimal algorithm for each t
chooses the reflector r with the highest probability of landing
in any window, and because this chance is periodic, it follows
that its schedule is periodic.4

Since schedules are periodic, it follows that the expected
number of packets that land in any window is constant. Thus,
the algorithm produces a schedule that satisfies the second
definition of optimality.

V. CHARACTERIZING ATTACKS

Armed with the ability to estimate attack path latencies and
to build an optimal schedule from them, we now turn our
development of an approach to experimentally validate lensing
attacks.

A. Features measured

We explore the effectiveness of pulsing attacks in terms of
three dimensions:

1) attacker bandwidth (sending capacity of originating sys-
tem)

2) pulse window size (duration over which attacker wants
packets to arrive at target)

3) maximum bandwidth to employ for each reflector

4There is the possibility that two equally good reflectors exist for time slot
at ti, and we could send to one at ti and the other at ti + p. We assume the
schedule consistently chooses just one.

Regarding the last of these, along with considerations such
as rate-limiting that a given reflector imposes on its activity,
an attacker might want to throttle the bandwidth to any given
reflector to avoid arousing suspicion. For our purposes, since
we do not know the resources of the reflectors we employ,
we err on the side of caution when using them, sending to
each at a maximum bandwidth of 500 pps over a course of
20–100 ms (i.e., at most 5 KB per pulse).

We do not explicitly explore the number of reflectors used
as a dimension, because the number of reflectors heavily
depends on the existing dimensions of attacker bandwidth and
maximum bandwidth to each reflector.

B. Metrics

In § IV we defined an optimal schedule as one that has the
greatest expected volume of packets falling within the pulse
window. This is intuitively a natural parameter to maximize.
However, if we solely use absolute number of packets as our
metric of efficacy, it can be artificially inflated just by in-
creasing the uplink bandwidth of the attacker or increasing the
target window size. This issue motivates us to we incorporate
some additional, bandwidth-agnostic metrics:

• bandwidth gain: bandwidth in pulse window at target
attacker’s maximum sending bandwidth

• concentration efficiency: # packets landing in window
total packets sent

The first metric is the most important from the short-term
point of view of the attacker. It gives the attacker a sense of
how much extra bandwidth the attack can produce.

The second metric, however, provides a good basis for deter-
mining how the attack scales with the attacker’s bandwidth. If
the size of the reflector pool remains constant, upon increasing
the sending (attacker) bandwidth, more time slots occur for
which the schedule fails to provide an available resolver to
send to (because we throttle bandwidth to any given reflector).
In this case, the bandwidth gain will artificially decrease. For
example, if (as an extreme case) we send a maximum of one
packet to each of 100 reflectors, then we can send at most
100 packets to the target. Thus, as our uplink bandwidth,
increases, the bandwidth gain will decrease (the bandwidth
gain numerator is capped at 100)—not because of poor scaling,
but because of an absence of suitable reflectors. However, all
other things equal, the concentration efficiency will remain
constant.

We note the importance of considering both of these metrics
together. If we only assess one of them, we can easily inflate
its value at the expense of the other: a large pulse window size
will lead to a concentration efficiency of 1 (ignoring packet
drops) but no bandwidth gain. A very small target window
could result in an extremely high bandwidth gain (if one packet
lands in it) but a very low concentration efficiency.

Lastly, we measure bandwidth in terms of packets per
second. For our evaluation, the packets we send and that are
reflected are small (around 100 bytes), which can make the
quantities look artificially high. For a sense of scale, 10K pps
translates to about 8 Mbps.

VI. EXPERIMENTAL RESULTS

To assess the efficacy of lensing, we emulated attacks on
machines under our control. We used an Windows Azure VM
instance on the West Coast as our attacker. We employed
another Azure VM instance along with an Amazon Web
Services VM instance, both on the East Coast, as our targets.
We used a publicly available list of 3,000 resolvers [1] as our
reflectors.

We registered a domain name5 that allows us to run author-
itative DNS servers under our control. We made the AWS
target instance authoritative for our domain and the Azure
target instance authoritative for a subdomain of the original.
This allows us to send recursive DNS queries through any
open recursive DNS server to either of our targets.

Before an attack, the attack machine quickly scans the
resolver list. It issues recursive queries to the resolvers (just
as in an actual attack) to obtain latency measurements. We
gather 10 samples from each resolver, which turned out well
for our attacks. For each resolver, we construct a histogram for
the distribution of each resolver’s attack path latency, and use
this along with a variant (discussed below) of the optimization
algorithm in § IV to construct the sending schedule. During
the attack, we simply send to the resolvers according to the
schedule.

Figure 4 shows the results of pulses emulating attackers with
different bandwidths using a relatively narrow pulse window of
20 ms. The emulation setup artificially capped the outgoing
bandwidth by adjusting the minimum time between sending
adjacent packets. The bandwidth gain corresponds to dividing
the height of the pulse bucket by that of the tallest bucket
for the attacker’s sending. We see gains of 14x for the low-
bandwidth case, 10x for moderate bandwidth, and 5x for high
bandwidth. The efficiency corresponds to dividing the area
of the pulse bucket by that of the sending buckets. We find
efficiencies around 50% for the low- and medium-bandwidth
cases, and just under 40% for the high bandwidth case.

The colors in Figure 4a map onto the reflectors used. We
see that while a large number of reflectors contributed to the
pulse, some do not at all, either due to misleading latency
measurements or because of jitter occurring during the attack
itself.

We observe what look like multiple pulses in Figures 4b
and 4c. Packet traces reveal that these secondary spikes
result from retransmissions by the resolvers. The target (an
authoritative DNS server) could not keep up with the rate of
incoming queries and failed to respond to many of them. The
resolvers then timed out and retransmitted. Since many of them
share a common retransmit timeout, their retransmissions ren-
dezvous at time = (original pulse time) + (retransmit timeout).
We could thus identify two common retransmit timeouts of
800 ms and 2 s. (We discuss ways an attacker could leverage
retransmissions in § VII-D.) Retransmissions also caused the
total number of packets received by the target to often exceed
the total number sent by the attacker by about a factor of two,

5pulsing.uni.me

though we chose our metrics such that these additions do not
affect our characterizations of the attack’s efficacy.

Figure 5 shows how the lensing metrics vary with pulse win-
dow duration when we fix the attacker bandwidth at 10K pps
and the maximum per-reflector bandwidth at 500 pps. As
expected, the bandwidth gain (and absolute pulse bandwidth)
falls as we increase the window size. This is not an indication
of the attack performing poorer with larger window sizes, but
instead an intrinsic consequence of choosing a larger window
size (and thus a larger denominator in the pulse bandwidth
calculation).6 In fact, the increase in efficiency shows that, at
larger window sizes, lensing performs closer to optimal, at the
cost of a less sharp pulse.

While efficiency increases modestly with window size,
the increase levels-off at larger window sizes. Much of this
leveling off can be explained by the fact that many high-
latency paths exhibit significant jitter (as discussed in § III).
In fact, for a window size as large as 100 ms, resolvers with
attack path latencies less than 250 ms (about half of those
used) show an efficiency (in aggregate) of about 80%, while
those with latencies over 250 ms show an efficiency of about
40% (which translates to an efficiency of about 60% over all
resolvers).

Figure 6 shows lensing properties as a function of maximum
bandwidth to any reflector. Here we have fixed the attacker
bandwidth at 10K pps and the window size at 20 ms. The
variation in the metrics of bandwidth gain and pulse bandwidth
simply reflect high throttling of bandwidth to a constant-size
pool of reflectors (discussed in more detail in § V-B). The
illuminating metric is that of concentration efficiency. We
see little variation, except at very high throttling (effectively
sending only 1 or 2 packets per reflector), where we obtain
efficiency. With these high efficiencies, however, comes no
bandwidth gain, meaning that the attack failed to create a pulse
because of the excessive throttling. Due to lack of variation
in efficiency, we conclude that an attacker gains little by
limiting the bandwidth to each reflector, so they would only
do so for purposes of stealth, and not to avoid complications
arising from reflectors rate-limiting or failing due to excessive
loads (unless those effects only come into play above rates of
500 pps, the bound we used).

Figure 7 shows how the attack scales as a function of the
attacker’s bandwidth, where we have fixed the pulse window
to 20 ms and the per-reflector bandwidth to 500 pps. The
relatively constant efficiency at the beginning indicates that the
attack scales well; we can explain the diminishing bandwidth
gain by the fact that we throttle bandwidth to each reflector
while keeping the pool of available reflectors constant (per
§ V-B). However, we see all metrics perform poorly at higher
bandwidths. Plotting peak pulse bandwidth versus maximum
attacker bandwidth (not shown) reveals a potential clue: we
would expect scaling linear with the attacker’s bandwidth, but
instead we find it levels off, indicating that the largest pulse we

6Similarly, if we focus light over a larger area, then its intensity at any
point in that area diminishes.

can create of duration 20 ms has a bandwidth of 50–60K pps.
The apparent pulse degradation at scale could mean that the

attack scales poorly. However, it could instead arise due to
the attack working—increased jitter and queuing could cause
pulse flattening or packet loss. (Apparent packet loss could
also arise due to measurement loss. We did confirm, however,
that dumpcap when recording our packet traces reported no
drops.)

To determine the cause of the poor scaling for the Azure
instance (the one we have been exploring in Figure 7), we
stressed it for a short duration at a rate of 100K pps. After three
trials, we found the maximum download bandwidth for small
DNS packets fell between 57–62K pps. Thus, we conclude
that the scaling issues indeed reflect the attack’s efficacy—
namely, it saturated our Azure instance’s bottleneck resource
in receiving these packets. We found that our AWS could
accommodate a higher pps rate (Figure 8). Here, the pulse
only starts to scale poorly at about 110–120K pps (further
evidence that the attack was not exhibiting poor scaling for
the Azure instance). We lacked sufficient attacker bandwidth
to push the pulse higher than that level, so we could not we
directly determine with certainty what causes the poor scaling
at 120K pps.

However, the difference in behavior between the Azure
and AWS instances with regards to unaccounted for packets
provides a further hint. We define unaccounted for packets as
those sent by the attacker but whose reflection never arrives at
the target. Some subtleties arise here. Due to retransmissions,
nearly all sent packets eventually arrive. Accordingly, we deem
packets as “unaccounted” if they fail to arrive within 200 ms
of the (20 ms-wide) pulse window.

In Azure, it appears that packets beyond the VM’s network
quota arriving in large bursts get buffered, as evidenced by
the pulse spreading in Figure 9. In contrast, the AWS instance
does not apparently buffer them (cf. Figures 4b and 4c).
Instead, the reflected packets never appear at the AWS end.
Figures 10a and 10b quantify this difference. With the Azure
instance as the target, we see a relatively constant proportion of
unaccounted packets; the attack delivers most of the packets,
even at high attacker bandwidths. However, at such higher
bandwidths the AWS target receives far fewer such packets,
per Figure 10b. It appears that AWS responds to excessive
traffic incoming to an instance by dropping packets instead of
queuing them as does Azure. This discrepancy between Azure
and AWS indicates that the attack indeed worked effectively,
and that the leveling-off at ≈ 120K pps mentioned above arises
due to an AWS resource limit.

In short, the attack displays impressive numbers and scales
well. As the peak pulse bandwidth nears the target’s maximum
capacity, however, the attacker sees diminishing returns.

VII. EXTENSIONS

In this section we assess a number of additions or potential
“improvements” to lensing attacks.

Time (ms)
0

20
40
60
80

100
120
140
160

N
u
m

b
er

 o
f
P

ac
k
et

s
Packets Leaving Attacker

0 100 200 300 400 500 600 700
Time (ms)

0
20
40
60
80

100
120
140
160

N
u
m

b
er

 o
f
P

ac
k
et

s

Packets Arriving at Victim

(a) Pulse from low-bandwidth (500 pps)
sending to 75 reflectors.

Time (ms)
0

500

1000

1500

2000

2500

N
u
m

b
er

 o
f
P

ac
k
et

s

Packets Leaving Attacker

0 500 100015002000250030003500
Time (ms)

0

500

1000

1500

2000

2500

N
u
m

b
er

 o
f
P

ac
k
et

s

Packets Arriving at Victim

(b) Pulse from medium-bandwidth
(10,000 pps) sending to 816 reflectors.

Time (ms)
0

500

1000

1500

2000

2500

N
u
m

b
er

 o
f
P

ac
k
et

s

Packets Leaving Attacker

0 500 100015002000250030003500
Time (ms)

0

500

1000

1500

2000

2500

N
u
m

b
er

 o
f
P

ac
k
et

s

Packets Arriving at Victim

(c) Pulse from high-bandwidth
(20,000 pps) sending to 1201 reflectors.

Figure 4: Selected pulses performed on AWS instance, using a maximum per-reflector bandwidth of 500 pps, a pulse window
of 20 ms, and a plot bucket also equal to 20 ms. Time along the X-axis for the top and bottom figures does not reflect
synchronized clocks, but instead starts (separately) shortly before the first appearance of attack packets.

0 20 40 60 80 100 120

Window Size (ms)

0

2

4

6

8

10

12

14

B
an

d
w

id
th

 G
ai

n

(a) Bandwidth Gain

0 20 40 60 80 100 120

Window Size (ms)

0.40

0.45

0.50

0.55

0.60

0.65

0.70

C
on

ce
n
tr

at
io

n
 E

ff
ic

ie
n
cy

(b) Concentration Efficiency

Figure 5: Lensing metrics as a function of target pulse window
size, with AWS instance as target. Attacker bandwidth =
10K pps; Max. per-reflector bandwidth = 500 pps.

0 100 200 300 400 500 600

Max Bandwidth to Any Reflector (pps)

0

2

4

6

8

10

12

B
an

d
w

id
th

 G
ai

n

(a) Bandwidth Gain

0 100 200 300 400 500 600

Max Bandwidth to Any Reflector (pps)

0.4

0.5

0.6

0.7

0.8

C
on

ce
n
tr

at
io

n
 E

ff
ic

ie
n
cy

(b) Concentration Efficiency

Figure 6: Lensing metrics as a function of throttled bandwidth
to each reflector, with AWS instance as target. Attacker
bandwidth = 10K pps; window size = 20 ms.

0 10 20 30 40 50

Attacker Max Bandwidth (thousand pps)

0

2

4

6

8

10

12

14
B

an
d
w

id
th

 G
ai

n

(a) Bandwidth Gain

0 10 20 30 40 50

Attacker Max Bandwidth (thousand pps)

0.1

0.2

0.3

0.4

0.5

0.6

C
on

ce
n
tr

at
io

n
 E

ff
ic

ie
n
cy

(b) Concentration Efficiency

Figure 7: Lensing metrics as a function of attacker’s maximum
bandwidth, with Azure instance as target. Max. per-reflector
bandwidth = 500 pps; pulse window = 20 ms.

A. Attacks on arbitrary end-hosts

We have framed our development of lensing attacks so far
in the context of targeting DNS servers. Since DNS generally
operates over UDP (and even for TCP has short flows), pulsing
attacks—which primarily attack TCP congestion control—
may have low efficacy against such servers. To target a more
rewarding victim, an attacker must somehow calculate attack
path latencies to that host. We present two methods, both
heavily influenced by King [8].

DNS cache manipulation. We use manipulation of
DNS cache contents7 to calculate latencies between a
DNS resolver and any other type of DNS server (not
just an authoritative one), per Figure 11, which shows
how to calculate the latencies between a resolver NSA

and any other DNS server NSB . Along these lines, we
create a DNS entry in our own authoritative DNS server—
mydomainname.com—stating that NSB (10.0.0.0)
is authoritative for 10-0-0-0.mydomainname.com.
Then, if we issue queries to NSA for subdomains of
10-0-0-0.mydomainname.com, NSA will have
cached the NS record indicating NSB as authoritative for

7Note that this manipulation—while called “poisoning” in the King paper—
does not reflect a DNS cache poisoning attack. Rather, we simply return
incorrect DNS records for domains over which we have legitimate control.

0 10 20 30 40 50

Attacker Max Bandwidth (thousand pps)

0

2

4

6

8

10

12

14

16

B
an

d
w

id
th

 G
ai

n

(a) Bandwidth Gain

0 10 20 30 40 50

Attacker Max Bandwidth (thousand pps)

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

C
on

ce
n
tr

at
io

n
 E

ff
ic

ie
n
cy

(b) Concentration Efficiency

Figure 8: Lensing metrics as a function of attacker’s maximum
bandwidth, with AWS instance as target. Max. per-reflector
bandwidth = 500 pps; pulse window = 20 ms.

10-0-0-0.mydomainname.com, and will query NSB .
NSB will reply with an error, but the chain of queries still
reveals the attack path RTT.

We note that we can extend this cache-poisoning technique
of King’s to arbitrary end hosts. By replacing NSB with B
(any arbitrary server—not necessarily for DNS), then when B
receives a DNS query from NSA, it most likely will not have a
service running on port 53 (DNS). According to RFC 1122 [3],
B “SHOULD” respond with an ICMP Port Unreachable, and,
in response, the UDP layer of NSA “MUST” pass an error
up to the application layer. If NSA’s DNS implementation
responds to this error indication by immediately responding
to us, we again can calculate the attack path RTT.

Two issues arise when using the above method. First,
B might not even receive packets sent to port 53 due to
firewalling; or may have an explicit configuration not to
respond. Second, the resolver implementation must respond
to ICMP error messages propagated to it and deal with them
appropriately. That said, we note that our server (using the
default configuration of BIND9 on Ubuntu Linux) does in fact
do both: it issues an ICMP error when port 53 lacks a running
service, and, as a resolver, immediately responds back to the
client when informed of an ICMP error. Further, we tested this
method to build schedules and create pulses, and found that it
indeed works with many resolvers. Some resolvers, however,

Time (ms)
0

200

400

600

800

1000

1200
N

u
m

b
er

 o
f
P

ac
k
et

s Packets Leaving Attacker

0 500 1000 1500 2000 2500
Time (ms)

0

200

400

600

800

1000

1200

N
u
m

b
er

 o
f
P

ac
k
et

s Packets Arriving at Victim

Figure 9: Illustration of pulse spreading at the Azure target.
Attacker bandwidth = 20,000 pps; window size = 20 ms.
Time along the X-axis for the top and bottom figures does
not reflect synchronized clocks, but instead starts (separately)
shortly before the first appearance of attack packets.

0 10 20 30 40 50

Attacker Max Bandwidth (thousand pps)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

P
ac

k
et

 L
os

s
P

ro
p
or

ti
on

(a) Azure Instance

0 10 20 30 40 50

Attacker Max Bandwidth (thousand pps)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

P
ac

k
et

 L
os

s
P

ro
p
or

ti
on

(b) AWS Instance

Figure 10: Proportion of unaccounted packets as a function of
attacker’s maximum bandwidth by instance.

Figure 11: Queries for performing King’s cache poisoning
technique (reprinted with permission). Dotted lines represent
queries to warm up caching of the NS record. Thick lines
reflect measurement of the attack path RTT.

do not react to the ICMP, and instead time out, leaving us with
no latency data. In short, we expect this refinement of King to
allow better estimation of path latencies to many more types
of hosts than just DNS servers.

DNS co-location. Lastly, attackers can attempt to find a
DNS server co-located with the actual victim. As noted in
[8], this occurs relatively commonly, but may introduce errors
in latency measurements. However, if the same error arises
for each attack path (as we would expect for a DNS server in
the same network as the victim), then it will not disrupt the
actual pulses. Each reflected packet will arrive at the victim
at a constant offset from when expected, but still at the same
time as the others.

B. Amplification

A natural extension to concentrating a flood in time is
to additionally make the flood larger via amplification. Both
amplification and lensing can compatibly leverage open DNS
resolvers as reflectors—indeed, attackers already use resolvers
in amplification attacks. Attackers could estimate attack path
latencies using the methods we adapted from King and during
their actual attack use the same reflectors for amplification.

In such a scenario, the attacker would gain the best of
both worlds. For example, an amplification factor of 15 and
a lensing bandwidth gain of 10 could, at its worst, allow an
attacker to create pulses at 150 times the attacker’s uplink
bandwidth!

Note that the form of lensing we have explored does not
need source address spoofing to enable reflection; instead it
relies upon recursive queries. However, DNS-based amplifica-
tion does require spoofing. While spoofing should readily work
with lensing, we refrained from assessing it both for simplicity
and to avoid confusing analysts potentially investigating our

traffic.
Forwarders (discussed in § II) introduce a potential dif-

ficulty for estimating attack path latencies in amplification
attacks. If the resolver the attacker contacts is indeed a for-
warder rather than a full resolver, then the attack path latency
measurements will span two intermediary hops between the
attacker and the target instead of just one. This problem
did not arise for our experiments, since our emulated attack
traffic followed the same path as the latency measurements
(attacker ⇒ forwarder ⇒ resolver ⇒ victim). However, in an
amplification attack we would expect the attacker to place a
large query response in each reflector’s cache. If cached at a
forwarder, then the path of the actual attack traffic will skip the
forwarder ⇒ resolver hop, which may or may not introduce
a significant latency discrepancy.

Turbo King [13] identified this issue and added the ability
to King to detect forwarders, essentially by positioning them-
selves at both ends of the DNS query (in our example, as
attacker and target). An attacker who sets up a personal DNS
server can do the same: identify potential forwarders, measure
the error they introduce, and weed them out as needed.

C. Distributed attacks

Another natural extension would be to employ a number
of geographically distributed machines to attempt to “add”
their pulses together at the victim. Doing so would require
relatively accurate time synchronization between the attack
seeders, depending on the desired pulse width. Our preliminary
experimentation with performing such synchronization with
NTP found that its precision suffices to reliably create pulses
for 40 ms window sizes for attackers located across continents
(North America and Europe in our tests). For smaller windows,
such as 20 ms, NTP synchronization becomes less reliable.
Thus, an attacker can distribute lensing if they do not need
a particularly narrow window, but will lose some efficiency
squeezing distributed attacks into smaller window sizes.

D. Bolstering the bandwidth gain

Increasing the attack-path latency. Higher attack path
latencies give an attacker a longer period over which to send
and thus funnel bandwidth. In our measurements the longest
attack path latencies we find were around 800 ms. However,
a way exists to extend the time a query takes while still
keeping the time predictable. If the attacker uses spoofing as
the reflection mechanism, then for each resolver the attacker
can send it a query that will cause it in turn to issue another
query that will take a long time (for example, by needing to
contact a distant8 name server), thus delaying the resolvers
final “reply” to the victim by a considerable amount of time.
Similarly, the attacker might induce a query to a DNS server
that does not respond, causing the resolver to time out and
only then send a negative response to the victim. The attacker

8One can probably find many misconfigured DNS entries to aid in this
regard. Also, an attacker can intentionally misconfigure a personal DNS server
to this end, for example by adding an NS entry to a server that will not
respond.

can likely measure the delay added by such timeouts with high
precision.

Retransmits. As shown in Figures 4b and 4c, resolver
retransmits can create secondary pulses of their own. The most
prevalent timeouts we observed were 800 msec and 2 sec.
An attacker can predetermine which timeouts predominate
among their set of resolvers and arrange to send pulses at a
period matching these timeouts. New pulses will coincide with
pulses generated from by retransmissions for previous pulses,
essentially superimposing the two and boosting the bandwidth
gain.

This attack however does not work when combined with
spoofing (for amplification), since in that case traffic reflected
off of the resolver consists of responses (rather than queries),
and resolvers will not retransmit responses.

VIII. DEFENSES

In this section we analyze possible defenses against lens-
ing attacks: preventing the initial reconnaissance phase, and
undermining the attack itself.

Detecting and thwarting reconnaissance. A potential
target could readily detect our King-style reconnaissance mea-
surements (for obtaining attack path latencies) due to their
noisy nature, as they exhibit a clear signature in terms of
repeated queries for non-existent subdomains. Attackers could
however potentially hide their presence by making queries for
legitimate subdomains, since our experiences show that 10 or
fewer queries per resolver suffices, so the attacker would just
need to find a few unique domain names.

The victim could possibly thwart reconnaissance by poi-
soning attack path RTT measurements, for example by intro-
ducing artificial jitter. Simply adding random delay to each
request will only slow the attacker down, since by gathering
more measurements they can likely employ robust statistics
to remove the noise. The victim might instead introduce an
amount of jitter fixed as a function of the reflector’s address,
ideally using a function keyed so that knowing one jitter would
not reveal information of another.

However, in response to either of these approaches the
attacker might instead make measurements to a nearby server
not under the victim’s control. In this case, the victim may
well lack any opportunity to detect reconnaissance or introduce
jitter.

Resisting attacks. Significant work exists on defending
against pulsing DoS attacks, much of which has application
to lensing as well, including RTO randomization [5], [11],
[22], extensions to RED [23], and increasing buffer sizes [17].
Increased buffering would likely manifest similar to Azure’s
pulse spreading (illustrated in Figure 9) and consequent de-
creased packet loss compared to AWS (in Figure 10). This
defense is not complete, however, as (a) it requires significant
buffer sizes, and (b) legitimate traffic will still suffer a latency
hit.

Regarding defending specifically against the lensing side
of our attack, a potential defense again revolves around
introducing jitter. Routers might somehow add jitter during

0 100 200 300 400 500 600

Maximum Jitter Added (ms)

0

20

40

60

80

100

120
P

ea
k
 B

an
d
w

id
th

 (
k
p
p
s)

Figure 12: Pulse degradation upon the addition of artificial
jitter (pulse window = 20 ms, sending rate = 10K pps).

an attack, possibly keyed off of flow 5-tuples to prevent intra-
flow reordering of legitimate traffic. Indeed, in principle such
an approach has effects similar to those of multipathing [2].

Figure 12 shows how this might play out. Here we added
uniformly distributed jitter to an emulated attack’s sending
schedule, essentially providing the same effect as routers
adding jitter would have. The graph indicates that cutting a
relatively small window pulse of 20 ms in half would require
adding jitter of 60 ms (i.e., uniformly distributed in the range
0–60 ms) to the attack path.

In short, it appears that attackers can readily hide their
reconnaissance from their targets. Mitigating actual lensing
attacks would require somehow changing attack path latencies
during the attack, but requires the addition of a significant
amount of jitter (which would itself severely impair real-
time traffic). These issues suggest that more general defenses
against pulsing attacks (such as improving TCP congestion
control robustness) might offer the most promise, rather than
specifically attempting to counter the timing-based nature of
lensing attacks.

IX. SUMMARY

We have introduced the concept of temporal lensing, which
lends itself quite naturally to conducting pulsing DoS attacks.
Using DNS recursion to both estimate attack path latencies
and to create pulses from relatively low-bandwidth floods,
we experimentally demonstrated its practicality and explored
its scaling properties. In addition to its direct application to
flooding a victim’s DNS server, we sketch how attackers
can likely distribute attacks and employ lensing for non-
DNS targets. We also explored mechanisms for increasing the
bandwidth gain further. We find that lensing by itself allows
attackers to concentrate the bandwidth of a flood by an order of
magnitude. Given these results, lensing’s further compatibility
with amplification, and the difficulties that arise in constructing
defenses, the attack appears to pose a significant threat.

X. ACKNOWLEDGMENTS

We are grateful to Mark Allman for much helpful advice
especially on forwarders. We also thank Ethan Jackson for
valuable insight on pinpointing packet loss on VMs and S.

Zayd Enam for fruitful discussions and generously allowing
use of his dedicated machine for bandwidth testing. Thanks too
to our shepherd, Vyas Sekar, and the anonymous reviewers for
their helpful comments. This work was supported by National
Science Foundation grant 1237265, for which we are grateful.
Opinions expressed in this work are those of the authors and
not the sponsor.

REFERENCES

[1] Public DNS Server List, May 2014. Available at
http://public-dns.tk/.

[2] AUGUSTIN, B., CUVELLIER, X., ORGOGOZO, B., VIGER, F., FRIED-
MAN, T., LATAPY, M., MAGNIEN, C., AND TEIXEIRA, R. Avoiding
traceroute anomalies with Paris traceroute. In Proc. ACM Internet
Measurement Conference (2006).

[3] BRADEN, R. RFC 1122: Requirements for Internet Hosts.
[4] DABEK, F., COX, R., KAASHOEK, F., AND MORRIS, R. Vivaldi: A

Decentralized Network Coordinate System. In Proc. SIGCOMM (2004),
vol. 34.

[5] EFSTATHOPOULOS, P. Practical Study of a Defense Against Low-rate
TCP-targeted DoS Attack. In ICITST (2009), IEEE, pp. 1–6.

[6] FRANCIS, P., JAMIN, S., JIN, C., JIN, Y., RAZ, D., SHAVITT, Y.,
AND ZHANG, L. IDMaps: A Global Internet Host Distance Estimation
Service. IEEE/ACM Transactions on Networking 9, 5 (2001).

[7] GUIRGUIS, M., BESTAVROS, A., MATTA, I., AND ZHANG, Y. Reduc-
tion of Quality (RoQ) Attacks on Internet End-systems. In Proc. IEEE
INFOCOM (2005).

[8] GUMMADI, K. P., SAROIU, S., AND GRIBBLE, S. D. King: Estimating
Latency Between Arbitrary Internet End Hosts. In Proc. ACM Internet
Measurment Workshop (2002).

[9] KANG, M. S., LEE, S. B., AND GLIGOR, V. D. The Crossfire Attack. In
Security and Privacy (SP), 2013 IEEE Symposium on (2013), pp. 127–
141.

[10] KOGLER, T. M. Single Gun, Multiple Round, Time-on-Target Capability
for Advanced Towed Cannon Artillery. Tech. rep., US Army Research
Laboratory, Aberdeen Proving Ground, 1995.

[11] KUZMANOVIC, A., AND KNIGHTLY, E. W. Low-rate TCP-targeted
Denial of Service attacks: The Shrew vs. the Mice and Elephants. In
Proc. ACM SIGCOMM (2003).

[12] LE, H. B. Advanced Naval Surface Fire Support Weapon Employment
Against Mobile Targets. Tech. rep., Naval Postgraduate School, Mon-
terey, Calif., 1999.

[13] LEONARD, D., AND LOGUINOV, D. Turbo King: Framework for Large-
scale Internet Delay Measurements. In Proc. IEEE INFOCOM (2008).

[14] LUO, X., AND CHANG, R. K. On a New Class of Pulsing Denial-of-
Service Attacks and the Defense. In Proc. NDSS (2005).

[15] NG, T. E., AND ZHANG, H. Predicting Internet Network Distance with
Coordinates-Based Approaches. In Proc. IEEE INFOCOM (2002).

[16] PAXSON, V. An Analysis of Using Reflectors for Distributed Denial-
of-Service Attacks. ACM SIGCOMM CCR 31, 3 (2001).

[17] SARAT, S., AND TERZIS, A. On the Effect of Router Buffer Sizes on
Low-rate Denial of Service Attacks. In Proc. Computer Communications
and Networks (2005).

[18] SCHOMP, K., CALLAHAN, T., RABINOVICH, M., AND ALLMAN, M.
On Measuring the Client-Side DNS Infrastructure. In Proc. ACM
Internet Measurement Conference (2013).

[19] SHARMA, P., XU, Z., BANERJEE, S., AND LEE, S.-J. Estimating
Network Proximity and Latency. ACM SIGCOMM CCR 36, 3 (2006),
39–50.

[20] WEIGLEY, R. Eisenhower’s Lieutenants: The Campaigns of France and
Germany, 1944–45. Indiana University Press, 1981.

[21] WONG, B., SLIVKINS, A., AND SIRER, E. G. Meridian: A Lightweight
Network Location Service without Virtual Coordinates. In Proc. SIG-
COMM (2005), vol. 35.

[22] YANG, G., GERLA, M., AND SANADIDI, M. Defense Against Low-rate
TCP-targeted Denial-of-Service Attacks. In ISCC (2004), vol. 1, IEEE,
pp. 345–350.

[23] ZHANG, C., YIN, J., CAI, Z., AND CHEN, W. RRED: Robust RED
Algorithm to Counter Low-rate Denial-of-Service Attacks. Communi-
cations Letters 14, 5 (2010), 489–491.

[24] ZHANG, Y., MAO, Z. M., AND WANG, J. Low-Rate TCP-Targeted DoS
Attack Disrupts Internet Routing. In NDSS (2007).

