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ABSTRACT
This paper considers the distribution of the rates at which
flows transmit data, and the causes of these rates. First,
using packet level traces from several Internet links, and
summary flow statistics from an ISP backbone, we examine
Internet flow rates and the relationship between the rate
and other flow characteristics such as size and duration. We
find, as have others, that while the distribution of flow rates
is skewed, it is not as highly skewed as the distribution of
flow sizes. We also find that for large flows the size and rate
are highly correlated. Second, we attempt to determine the
cause of the rates at which flows transmit data by developing
a tool, T-RAT, to analyze packet-level TCP dynamics. In
our traces, the most frequent causes appear to be network
congestion and receiver window limits.

Categories and Subject Descriptors
C.2.2 [Computer Communication Networks]: Network
Protocols

General Terms
Measurement

Keywords
Network measurement, TCP, flow rates

1. INTRODUCTION
Researchers have investigated many aspects of Internet

traffic, including characteristics of aggregate traffic [8, 16],
the sizes of files transferred, traffic of particular applications
[4] and routing stability [7, 17], to name a few. One area
that has received comparatively little attention is the rate
at which applications or flows transmit data in the Inter-
net. This rate can be affected by any of a number of fac-
tors, including, for example, application limits on the rate
at which data is generated, bottleneck link bandwidth, net-
work congestion, the total amount of data the application
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has to transmit, whether or not the application uses conges-
tion control, and host buffer limitations. An Internet link
may well contain traffic aggregated from many flows lim-
ited by different factors elsewhere in the network. While
each of these factors is well understood in isolation, we have
very little knowledge about their prevalence and effect in
the current Internet. In particular, we don’t have a good
understanding of the rates typically achieved by flows, nor
are we aware of the dominant limiting factors.

A better understanding of the nature and origin of flow
rates in the Internet is important for several reasons. First,
to understand the extent to which application performance
would be improved by increased transmission rates, we must
first know what is limiting their transmission rate. Flows
limited by network congestion are in need of drastically dif-
ferent attention than flows limited by host buffer sizes. Fur-
ther, many router algorithms to control per-flow bandwidth
algorithms have been proposed, and the performance and
scalability of some of these algorithm depends on the nature
of the flow rates seen at routers [9, 10, 14]. Thus, know-
ing more about these rates may inform the design of such
algorithms. Finally, knowledge about the rates and their
causes may lead to better models of Internet traffic. Such
models could be useful in generating simulation workloads
and studying a variety of network problems.

In this paper we use data from packet traces and sum-
mary flow level statistics collected on backbone routers and
access links to study the characteristics and origins of flow
rates in the Internet. Specifically, we examine the distri-
bution of flow rates seen on Internet links, and investigate
the relationship between flow rates and other characteris-
tics of flows such as their size and duration. Given these
macroscopic statistics, we then attempt to understand the
causes behind these flow rates. We have developed a tool,
called T-RAT, which analyzes traces of TCP connections
and infers which causes among several possibilities limited
the transmission rates of the flows.

Among our significant findings are the following. First,
confirming what has been observed previously, the distri-
bution of flow rates is skewed, but not as highly skewed
as flow sizes. Second, we find, somewhat surprisingly, that
flow rates strongly correlated with flow sizes. This is strong
evidence that user behavior, as evidenced by the amount
of data they transfer, is not intrinsically determined, but
rather, is a function of the speed at which files can be down-
loaded. Finally, using our analysis tool on several packet
traces, we find that the dominant rate limiting factors ap-
pear to be congestion and receiver window limits. We then



Trace Date Length # Packets Sampled Bidirectional
Access1a Jan. 16, 2001 2 hours 22 million — Yes
Access1b Dec 13, 2001 30 minutes 5.5 million — Yes
Access1c Jan. 3, 2002 1 hour 32 million — Yes
Access2 Jan. 2, 2002 1 day 10 million 1 in 256 Yes
Peering1 Jan. 24, 2001 45 minutes 34 million — No
Regional1a Jan. 2, 2002 1 hour 1.2 million 1 in 256 No
Regional1b Jan. 3, 2002 2 hours 2.3 million 1 in 256 No
Regional2 Jan. 3, 2002 2 hour 5 million 1 in 256 No

Table 1: Characteristics of 8 packet traces

examine the distribution of flow rates among flows in the
same causal class (i.e., flows whose rate is limited by the
same factor).

While we believe our study is the first of its kind to exam-
ine the causes of Internet flow rates and relate these causes
to other flow characteristics, it is by no means the last word
in this area. This paper raises the question, but it leaves
many issues unaddressed. However, the value in our work
is a new tool that allows for further investigation of this
problem, and an initial look at the answers it can provide.

Also, while we address flow rates from a somewhat differ-
ent angle, our paper is not the first to study Internet flow
rates. A preliminary look at Internet flow rates in a small
number of packet traces found the distribution of rates to
be skewed, but not as highly skewed as the flow size distri-
bution [14]. This result was consistent with observation in
[10] that a small number of flows accounted for a significant
number of the total bytes. In recent work, Sarvotham et al
[20] found that a single high rate flow usually accounts for
the burstiness in aggregate traffic. In [2], the authors look at
the distribution of throughput across connections between
hosts and a web server and find that the rates are often con-
sistent with a log-normal distribution. These papers have all
made important observations. In this paper, we aim to go
beyond this previous work, looking at flow rates making up
aggregate traffic and attempting to understand their causes.

The rest of this paper is organized as follows. In the next
section we describe the data sets and methodology used in
this study. In Section 3 we present various statistics con-
cerning flow rates and related measures. We then describe
our rate analyzing tool in Section 4, describe our efforts to
validate its performance in Section 5, and present results of
applying it to packet traces in Section 6. We present some
conclusions in Section 7.

2. DATASETS AND METHODOLOGY
We used data from two sources in our study. The first

set of data consisted of 8 packet traces collected over a 14
month period. The traces were collected at high speed ac-
cess links connecting two sites to the Internet; a peering link
between two Tier 1 providers; and two sites on a backbone
network. The latter 3 traces were sampled pseudo-randomly
(using a hash on the packet header fields) at a rate of 1/256.
Sampling was on a per-flow basis, so that all packets from
a sampled flow were captured. The packet monitors at the
access links saw all traffic going between the monitored sites
and the Internet, so both directions of connections were in-
cluded in the traces. For the other traces, because of asym-
metric routing often only one direction of a connection is

visible. The finite duration of the traces (30 minutes to 2
hours) introduces a bias against the largest and most long-
lived flows. However, the effect of truncation on flow rates,
the statistic in which we are most interested, should not be
significant. The characteristics of the traces are summarized
in Table 1.

We supplemented the packet level traces with summary
flow level statistics from 19 backbone routers in a Tier 1
provider. Data was collected for 24 hours from the 19 routers
on each of 4 days between July, 2000 and November, 2001,
yielding 76 sets of data. Because this data was collected
concurrently from routers in the same backbone provider, a
single flow can be present in more than one of the datasets.
We do not know how often this occurred. However, the
19 routers represent a relatively small fraction of the provider’s
routers, so we expect that each dataset contains a relatively
unique set of flows.

Records in these datasets contain the IP addresses of the
endpoints, port numbers, higher layer protocol, the start
time and end time for the flow, the total number of packets
and the total number of bytes. Since these datasets lack
packet level details, we cannot use them for the trace analy-
sis in Section 4. However, they provide a useful supplement
to our results in Section 3, greatly broadening the scope of
the data beyond the limited number of packet traces. Each
of the 4 days of summary statistics represents between 4 and
6 billion packets and between 1.5 and 2.5 terabytes of data.

Flows can be defined by either their source and destina-
tion addresses, or by addresses, port numbers and protocol.
The appropriateness of a definition depends in part on what
one is studying. For instance, when studying router defini-
tions that do per-flow processing, the former definition may
be appropriate. When examining the characteristics of in-
dividual transport layer connections the latter is preferred.
For the results reported in this paper, we used the 5-tuple
of IP addresses, port numbers, and protocol number. We
also generated results defining flows by source and destina-
tion IP addresses only. Those results are not qualitatively
different. Also, for the results presented here, we used a
60 second timeout to decide that an idle flow has termi-
nated. Repeating the tests with a 15 second timeout again
did not qualitatively affect the results.

In the analysis that follows we report on some basic per-
flow statistics, including flow size, duration and rate. Size
is merely the aggregate number of bytes transferred in the
flow (including headers), and duration is the time elapsed
between the first and last packets of a flow. Flow rate is
also straightforward (size divided by duration) with the ex-
ception that determining a flow rate for very short flows is
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Figure 1: Complementary distribution of flow
rates
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Figure 2: Complementary distribution of flow
sizes
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Figure 3: Complementary distribution of flow dura-
tion

problematic. In particular, rate is not well-defined for single
packet flows whose duration by definition is zero. Similarly,
flows of very short (but non-zero) duration also present a
problem. It does not seem reasonable to say that a 2-packet
flow that sends these packets back-to-back has an average
rate equal to the line rate. In general, since we are most
interested in the rate at which applications transmit data,
when calculating rates we ignore flows of duration less than
100 msec, since the timing of these flows’ packets may be
determined as much by queueing delays inside the network
as by actual transmission times at the source.

3. CHARACTERISTICS
In this section we examine the characteristics of Inter-

net flows. We begin by looking at the distributions of rate,
size and duration, before turning to the question of relation-
ships among them. Throughout, we start with data from the
packet traces, and then supplement this with the summary
flow data.

3.1 Rate Distribution
Figure 1 plots the complementary distribution of flow

rates, for flows lasting longer than 100 msec, in the 8 packet
traces. The distributions show that average rates vary over
several orders of magnitude. Most flows are relatively slow,
with average rates less than 10kbps. However, the fastest
flows in each trace transmit at rates above 1Mbps; in some

traces the top speed is over 10Mbps. For comparison, we
also show the complementary distributions of flow size and
duration in Figures 2 and 3, respectively. The striking dif-
ference here is the longer tail evident in the distributions of
flow sizes for the packet traces. One possible explanation
of this difference is that file sizes are potentially unbounded
while flow rates are constrained by link bandwidths.

A previous study of rate distributions at a web server sug-
gested that the rate distributions were well described by a
log-normal distribution [2]. To test that hypothesis, we use
the quantile-quantile plot (Q-Q plot) [3] to compare the flow
rate distribution with analytical models. The Q-Q plot de-
termines whether a data set has a particular theoretical dis-
tribution by plotting the quantiles of the data set against
the quantiles of the theoretical distribution. If the data
comes from a population with the given theoretical distri-
bution, then the resulting scatter plot will be approximately
a straight line. The Q-Q plots in Figures 4 and 5 compare
the log of the rate distribution to the normal distribution for
two of the traces (Access1c and Regional2). The fit between
the two is visually good. As in Reference [2], we further
assess the goodness-of-fit using the Shapiro-Wilk normality
test [5]. For Access1c (Figure 4), we can not reject the null
hypothesis that the log of rate comes from normal distribu-
tion at 25% significance level; for Regional2 (Figure 5), we
can not reject normality at any level of significance. This
suggests the fit for a normal distribution is indeed very good.
Applying the Shapiro-Wilk test on all the packet traces and
flow summary data, we find that for 60% of the data sets we
can not reject normality at 5% significance level. These re-
sults give evidence that the flow rates can often be described
with a log-normal distribution.

The next question we address is how important the fast
flows are. In particular, how much of the total bytes trans-
ferred are accounted for by the fastest flows? Note that a
skewed rate distribution need not imply that fast flows ac-
count for a large fraction of the bytes. This will depend on
the size of fast flows. Figure 6 plots the fraction of bytes
accounted for in a given percentage of the fastest flows for
the 8 packet traces. We see that in general, the 10% fastest
flows account for between 30% and 90% of all bytes trans-
ferred, and the 20% fast flows account for between 55% and
95%. This indicates that while most flows are not fast, these
fast flows do account for a significant fraction of all traffic.
Figure 7 shows results for the summary flow data. This
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Figure 4: Q-Q plot for Access1c trace
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Figure 5: Q-Q plot for Regional2 trace
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Figure 6: Fraction of bytes in fastest flows
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Figure 7: Distribution of the fraction of bytes in
the 10% and 20% fastest flows for summary flow
data.

figure plots the distribution of the percentage of bytes ac-
counted for by the 10% and 20% fastest flows across the
76 sets of data. The skewed distributions exhibited in the
traces are evident here as well. For example, in over 80% of
the datasets, the fastest 10% of the flows account for at least
50% of the bytes transferred. Similarly, the fastest 20% of
the flows account for over 65% of the bytes in 80% of the
datasets. For comparison, the fraction of bytes in the largest
flows (not shown) is even greater.

We now characterize flows along two dimensions: big or
small, and fast or slow. We chose 100 KByte as a cutoff on
the size dimension and 10 KByte/sec on the rate dimension.
These thresholds are arbitrary, but they provide a way to
characterize flows in a two-by-two taxonomy.

Table 2 shows the fraction of flows and bytes in each of the
4 categories for the packet traces. Flows that are small and
slow, the largest group in each trace, account for between
44% and 63% of flows. However, they account for a relatively
small fraction of the total bytes (10% or less.) There are
also a significant number of flows in the small-fast category
(between 30% and 40%) but these too represent a modest
fraction of the total bytes (less than 10% in all but one
trace.) On the other hand, there are a small number of
flows that are both big and fast (generally less than 10%).
These flows account for the bulk of the bytes transferred—at
least 60% in all of the traces, and over 80% in many of them.
The big-slow category is sparsely populated and these flows
account for less than 10% of the bytes. Data for the 76 sets

of summary flow statistics (not shown here) are generally
consistent with the packet trace results.

One question about Internet dynamics is the degree to
which traffic is dominated (in different ways) by small flows.
In terms of the number of flows, there is little doubt that the
vast majority are indeed small. More than 84% of the flows
in all of our traces (and over 90% in some of them) meet our
(arbitrary) definition of small. However, before we conclude
that the Internet is dominated by these small flows and that
future designs should be geared towards dealing with them,
we should remember that a very large share of the bytes
are in big and fast flows. In 6 of the 8 traces we examined,
these flows comprised over 80% of the bytes. Thus, when
designing mechanism to control congestion or otherwise deal
with traffic arriving at a router, these big and fast flows are
an important (and sometimes dominant) factor.

3.2 Correlations
We next examine the relationship between the flow char-

acteristics of interest. Table 3 shows 3 pairs of correlations—
duration and rate, size and rate, and duration and size—for
the 8 packet traces. We computed correlations of the log of
these data because of the large range and uneven distribu-
tion. We restricted the correlations to flows with durations
longer than 5 seconds. Results for the other flow definitions
are similar.

The correlations are fairly consistent across traces, and
show a negative correlation between duration and rate, a



Small-Slow Small-Fast Big-Slow Big-Fast
Trace flows bytes flows bytes flows bytes flows bytes

Access1a 0.602 0.025 0.326 0.031 0.016 0.043 0.057 0.901
Access1b 0.436 0.016 0.468 0.024 0.02 0.022 0.076 0.938
Access1c 0.528 0.006 0.395 0.01 0.018 0.01 0.059 0.974
Access2 0.518 0.018 0.381 0.024 0.021 0.073 0.08 0.885
Peering1 0.581 0.07 0.354 0.066 0.017 0.1 0.048 0.764
Regional1a 0.506 0.056 0.345 0.05 0.027 0.078 0.122 0.816
Regional1b 0.463 0.044 0.406 0.05 0.023 0.068 0.108 0.837
Regional2 0.626 0.103 0.341 0.193 0.007 0.092 0.026 0.612

Table 2: Fraction of flows and bytes in Small/Slow, Small/Fast, Big/Slow and Big/Fast flows.

Trace logD,logR logS,logR logD,logS
Access1a -0.366 0.870 0.140
Access1b -0.187 0.883 0.296
Access1c -0.319 0.877 0.175
Access2 -0.319 0.885 0.159
Peering1 -0.319 0.847 0.235
Regional1a -0.453 0.842 0.100
Regional1b -0.432 0.835 0.136
Regional2 -0.209 0.877 0.287

Table 3: Correlations of size, rate and duration in 8
packet traces

slight positive correlation between size and duration and a
strong correlation between the size and rate. The correlation
between rate and size is also evident in other subsets of flows.
For flows longer than 1 second, the correlations range from
.65 to .77. For flows lasting longer than 30 seconds, the
correlations range from .90 to .95.

Figure 8 shows CDFs of the 3 correlations taken across
each of our datasets (packet traces and summary flow level
statistics). This figure shows that the general trend exhib-
ited in the packet traces was also evident in the summary
flow data we examined.

The most striking result here is the correlation between
size and rate. If users first decided how much data they
wanted to transfer (e.g., the size of a file) independent of
the network conditions, and then sent it over the network,
there would be little correlation between size and rate,1 a
strong correlation between size and duration, and a strongly
negative correlation between rate and duration. This is not
what we see; the negative correlation between rate and du-
ration is fairly weak, the correlation between size and dura-
tion is very weak, and the correlation between size and rate
is very strong. Thus, users appear to choose the size of their
transfer based, strongly, on the available bandwidth. While
some adjustment of user behavior was to be expected, we
were surprised at the extent of the correlation between size
and rate.

1TCP slow-start could cause some correlation between rate
and size. In order to assess the impact of slow-start on the
correlations we observed, we eliminated the first 1 second of
all flows and recomputed the correlations. For flows lasting
longer than 5 seconds, the resulting correlations between size
and rate in the 8 traces ranged from .87 to .92, eliminating
slow-start as a significant cause of the correlation.
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4. TCP RATE ANALYSIS TOOL
In the previous section we looked at flow rates and their

relationship to other flow characteristics. We now turn our
attention to understanding the origins of the rates of flows
we observed. We restrict our attention to TCP flows for two
reasons. First, TCP is used by most traffic in the Internet
[21]. Second, the congestion and flow control mechanisms
in TCP give us the opportunity to understand and explain
the reasons behind the resulting transmission rates. In this
section we describe a tool we built, called T-RAT (for TCP
Rate Analysis Tool) that examines TCP-level dynamics in
a packet trace and attempts to determine the factor that
limits each flow’s transmission rate.

T-RAT leverages the principles underlying TCP. In partic-
ular, it uses knowledge about TCP to determine the number
of packets in each flight and to make a rate limit determina-
tion based on the dynamics of successive flights. However,
as will become evident from the discussion below, principles
alone are not sufficient to accomplish this goal. By necessity
T-RAT makes use of many heuristics which through experi-
ence have been found to be useful.

Before describing how T-RAT works, we first review the
requirements that motivate its design. These include the
range of behavior it needs to identify as well as the environ-
ment in which we want to use it.

The rate at which a TCP connection transmits data can
be determined by any of several factors. We characterize
the possible rate limiting factors as follows:

• Opportunity limited: the application has a limited
amount of data to send and never leaves slow-start.



This places an upper bound on how fast it can trans-
mit data.

• Congestion limited: the sender’s congestion window is
adjusted according to TCP’s congestion control algo-
rithm in response to detecting packet loss.

• Transport limited: the sender is doing congestion avoid-
ance, but doesn’t experience any loss.

• Receiver window limited: the sending rate is limited
by the receiver’s maximum advertised window.

• Sender window limited: the sending rate is constrained
by buffer space at the sender, which limits the amount
of unacknowledged data that can be outstanding at
any time.

• Bandwidth limited: the sender fully utilizes, and is
limited by, the bandwidth on the bottleneck link. The
sender may experience loss in this case. However, it is
different from congestion limited in that the sender is
not competing with any other flows on the bottleneck
link. An example would be a connection constrained
by an access modem.

• Application limited: the application does not produce
data fast enough to be limited by either the transport
layer or by network bandwidth.

We had the following requirements in designing T-RAT.
First, we do not require that an entire TCP connection,
or even its beginning, be observed. This prevents any bias
against long-lived flows in a trace of limited duration. Sec-
ond, we would like the tool to work on traces recorded at
arbitrary places in the network. Thus, the analyzer may
only see one side of a connection, and it needs to work even
if it was not captured near either the sender or receiver. Fi-
nally, to work with large traces, our tool must work in a
streaming fashion to avoid having to read the entire trace
into memory.

T-RAT works by grouping packets into flights and then
determining a rate limiting factor based on the behavior of
groups of adjacent flights. This entails three main compo-
nents: (i) estimating the Maximum Segment Size (MSS) for
the connection, (ii) estimating the round trip time, and (iii)
analyzing the limit on the rate achieved by the connection.
We now describe these components in more detail. As men-
tioned above, T-RAT works with either the data stream,
acknowledgment stream, or both. In what follows, we iden-
tify those cases when the algorithm is by necessity different
for the data and the acknowledgment streams.

4.1 MSS Estimator
The analysis requires that we have an estimate of the MSS

for a connection. When the trace contains data packets, we
set the MSS to the largest packet size observed. When the
trace contains only acknowledgments, estimating the MSS is
more subtle, since there need not be a 1-to-1 correspondence
between data and acknowledgment packets. In this case, we
estimate the MSS by looking for the most frequent com-
mon divisor. This is similar to the greatest common divisor,
however, we apply heuristics to avoid looking for divisors of
numbers of bytes acknowledged that are not multiples of the
MSS.

4.2 Round Trip Time Estimator
In this section, we present a general algorithm for estimat-

ing RTT based on packet-level TCP traces. RTT estimation
is not our primary goal but, rather, a necessary component
of our rate analyzer. As such, we ultimately judge the al-
gorithm not by how accurately it estimates RTT (though
we do care about that) but by whether it is good enough to
allow the rate analyzer to make correct decisions.

There are three basic steps to the RTT estimation algo-
rithm. First, we generate a set of candidate RTTs. Then
for each candidate RTT we assess how good an estimate of
the actual RTT it is. We do this by grouping packets into
flights based on the candidate RTT and then determining
how consistent the behavior of groups of consecutive flights
is with identifiable TCP behavior. Then we choose the can-
didate RTT that is most consistent with TCP. We expand
on each of these steps below.

We generate 27 candidates, Tk, between 0.003 sec and
3 sec, where Tk = 0.003 ∗ 1.3k sec. This covers the range
of round trip times we would normally expect anywhere be-
yond the local network.

Assume we have a stream of packets, Pi, each with arrival
time Ti and an inter-arrival interval ∆Pi = Ti − Ti−1. For
a candidate RTT, we group packets into flights as follows.
Given the first packet, P0, in a flight, we determine the first
packet in the next flight by examining ∆Pi for all packets
with arrival times between T0 + RTT and T0 + fac · RTT ,
where fac is a factor to accommodate variation in the round
trip time. We identify the packet P1 with the largest inter-
arrival time in this interval. We also examine P2, the first
packet that arrives after T0+fac ·RTT . If ∆P2 ≥ 2·∆P1, we
choose P2 as the first packet of the next flight. Otherwise,
we choose P1.

There is an obvious tradeoff in the choice of fac. We
need fac to be large enough to cover the variation of RTT.
However, setting fac too large will introduce too much noise,
thereby reducing the accuracy of the algorithm. Currently,
we set fac to 1.7, which is empirically optimal among 1.1,
1.2, ..., 2.0.

Once a set of flights, Fi (i ≥ 0) has been identified for a
candidate RTT, we evaluate it by attempting to match its
behavior to that of TCP. Specifically, we see whether the
behavior of successive flights is consistent with slow-start,
congestion avoidance, or response to loss. We elaborate on
how we identify each of these three behaviors.

Testing for Packet Loss: When the trace contains data
packets, we infer packet loss by looking for retransmissions.
Let seqB be the largest sequence number seen before flight
F . We can conclude that F has packet loss recovery (and
a prior flight experienced loss) if and only if we see at least
one data packet in F with upper sequence number less than
or equal to seqB . For the acknowledgment stream, we in-
fer packet loss by looking for duplicate acknowledgments.
Like TCP, we report a packet loss whenever we see three
duplicate acknowledgments. In addition, if a flight has no
more than 4 acknowledgment packets, we report a packet
loss whenever we see a single duplicate. The latter helps
to detect loss when the congestion window is small, which
often leads to timeouts and significantly alters the timing
characteristics. These tests are robust to packet reordering
as long as it does not span flight boundaries or cause 3 du-
plicate acknowledgments.



Testing for Congestion Avoidance: Given a flight F ,
define its flight size, SF , in terms of the number of MSS
packets it contains:

SF =

‰
seq+

F − seq−F
MSS

ı

where seq−F is the largest sequence number seen before F ,
and seq+

F is the largest sequence number seen before the next
flight. We define a flight’s duration DF as the lag between
the arrival of the first packet of F and the first packet in the
subsequent flight.

Testing whether four consecutive flights2 Fi (i = 0, 1, 2, 3)
are consistent with congestion avoidance requires determin-
ing whether the flight sizes, SFi

, exhibit an additive increase
pattern. The test is trivial when the receiver acknowledges
every packet. In this case, we only need to test whether
SFi+1

− SFi
= 1 holds for i = 0, 1, 2.

The test is considerably more complex with delayed ac-
knowledgments. In this case, the sizes of successive flights
need not increase by 1. Because only every other packet
is acknowledged, the sender’s congestion window increases
by 1 on average every second flight. Further, because the
flight size is equal to the sender’s window minus unacknowl-
edged packets, the size of successive flights may decrease
when the acknowledgment for last packet in the prior flight
is delayed. Hence, sequences of flight sizes like the following
are common:

n, n + 1, n + 1
| {z }

∆S=0

, n + 2, n + 1
| {z }

∆S=−1

, n + 2, n + 3, n + 4, n + 3, ...

In our algorithm, we consider flights Fi(i = 0, 1, 2, 3) to
be consistent with congestion avoidance if and only if the
following three conditions are met:

1. −2 ≤ SFi
− predictedi ≤ 2 for i = 1, 2, 3, where

predictedi = max0≤k<i (SFk
) is the predicted number

of segments in flight Fi.

2. The flight sizes are not too small and have an overall
non-decreasing pattern. Specifically, we apply the fol-
lowing three tests. (i) SFi

≥ 2 for i = 0, 1, 2, 3; (ii)
SF3

≥ max(3, SF0
); (iii) max Fi ≥ 4.

3. The flight durations are not too different. More specif-
ically, max DFi

≤ 4 · min DFi
.

The first condition above captures additive increase patterns
with and without delayed acknowledgments. The second
and third conditions are sanity checks.

Testing for Slow-Start: As was the case with conges-
tion avoidance, TCP dynamics differ substantially during
slow-start with and without delayed acknowledgments. We
apply different tests for each of the two cases and classify
the behavior as consistent with slow-start if either test is
passed.

To capture slow-start behavior without delayed acknowl-
edgments, we only need to test whether SFi+1

= 2·SFi
holds

for i = 0, 1, 2.
The following test captures slow-start dynamics when de-

layed acknowledgments are used. We consider flights Fi(i =

2As the discussion below on delayed acknowledgments in-
dicates, and as confirmed by experience, four consecutive
flights is the smallest number that in most cases allows us
to identify the behavior correctly.

0, 1, 2, 3) to be consistent with slow-start behavior if and
only if the following two conditions are met:

1. −3 ≤ SFi
− predictedi ≤ 2 for i = 1, 2, 3, where

predictedi = SFi−1
+ ACKFi−1

is the predicted num-
ber of segments in flight Fi, ACKFi−1

is the esti-
mated number of non-duplicate acknowledgment pack-
ets in flight Fi−1. (For an acknowledgment stream,
ACKFi−1

can be counted directly. For a data stream,
we estimate ACKFi−1

as ⌊SFi−1
/2⌋.)

2. The flight sizes are not too small and have an over-
all non-decreasing pattern. Specifically, we apply the
following tests: (i) SFi

≥ SFi−1
for i = 1, 2, 3; (ii)

SF3
≥ max(3, 2 · SF0

).

The first condition captures the behavior of slow-start with
and without delayed acknowledgments. The second and
third are sanity checks.

Analyzing TCP Dynamics: Having described how we
identify slow-start and congestion avoidance, and how we
detect loss, we now present our algorithm for assessing how
good a set of flights, Fi, generated for a candidate RTT is.
Let c be the index of the current flight to be examined. Let
s be the state of the current flight: one of CA, SS or UN, for
congestion avoidance, slow-start and unknown, respectively.
Initially, s = UN . For a given flight, Fc, we determine the
state by examining Fc, Fc+1, Fc+2 and Fc+3 and applying
the following state transitions.

• s = CA:

– If there is loss in at least one of the 4 flights, then
s transitions to UN.

– If the 4 flights show additive increase behavior as
described above then we remain in state CA.

– Similarly, we also remain in state CA even if we
don’t recognize the behavior. As with TCP, we
only leave CA if there is packet loss.

• s = SS:

– If there is loss in at least one of the 4 flights, then
s transitions to UN.

– If the 4 flights are consistent with multiplicative
increase, then s remains SS.

– Otherwise, s transitions to UN.

Note that we can leave state SS when there is packet
loss or there is some flight we do not understand.

• s = UN :

– If there is loss in at least one flight, s remains UN.

– If the four flights are consistent with the multi-
plicative increase behavior then s transitions to
SS.

– If the four flights are consistent with additive in-
crease, s transitions to CA.

– Otherwise, s remains UN.



As we analyze the set of flights, we sum up the number
of packets in flights that are either in CA or SS. We assign
this number as the score for a candidate RTT and select the
candidate with the highest score.

We have made several refinements to the algorithms de-
scribed above, which we briefly mention here but do not
describe further. First, when testing for slow-start or con-
gestion avoidance behavior, if an initial test of a set of flights
fails, we see whether splitting a flight into two flights or
coalescing two adjacent flights yields a set of flights that
matches the behavior in question. If so, we adjust the flight
boundaries. Second, to accommodate variations in RTT,
we continually update the RTT estimate using an exponen-
tially weighted moving average of the durations of successive
flights. Third, in cases where several candidate RTTs yield
similar scores, we enhance the algorithm to disambiguate
these candidates and eliminate those with very large or very
small RTTs. This also allows us to reduce the number of
candidate RTTs we examine.

4.3 Rate Limit Analysis
Using the chosen RTT, we apply our rate limit analysis

to determine the factor limiting a flow’s transmission rate.
Since conditions can change over the lifetime of a flow, we
continually monitor the behavior of successive flights. We
periodically check the number of packets seen for a flow.
Every time we see 256 packets, or when no packets are seen
for a 15 second interval, we make a rate limit determination.
We now describe the specific tests we apply to determine the
rate limiting factor.

Bandwidth Limited: A flow is considered bandwidth
limited if it satisfies either of the following two tests. The
first is that it repeatedly achieves the same amount of data in
flight prior to loss. Specifically, this is the case if: (i) there
were at least 3 flights with retransmissions; and (ii) the
maximum and minimum flight sizes before the loss occurs
differ by no more than the MSS.

The second test classifies a flow as bandwidth limited if it
sustains the link bandwidth on its bottleneck link. Rather
than attempting to estimate the link bandwidth, we look
for flows in which packets are nearly equally-spaced. Specif-
ically, a flow is considered bandwidth limited if Thi < 2∗Tlo,
where Tlo is the 5th percentile of the inter-packet times3 and
Thi is the P th percentile. We set P = max(95, 100∗(1− .75 ·
#flights

#packets
)). P must be a function of the flight size. Other-

wise, we risk classifying sender and receiver window limited
flows that have large flight sizes as bandwidth limited.

Congestion Limited: A flow is considered congestion
limited if it experienced loss and it does not satisfy the first
test for bandwidth limited.

Receiver Window Limited: We can only determine
that a flow is receiver window limited when the trace con-
tains acknowledgments since they indicate the receiver’s ad-
vertised window. We determine a flow to be receiver window
limited if we find 3 consecutive flights Fi(i = 1, 2, 3), with
flight sizes Si ·MSS > awndmax − 3 ·MSS, where awndmax

is the largest receiver advertised window size. The differ-

3In fact, because delayed acknowledgments can cause what
would otherwise be evenly spaced packets to be transmit-
ted in bursts of 2, we cannot use the inter-packet times
directly in this calculation. For data packets, instead of
using the inter-arrival distribution, ∆Pi, directly, we use
∆P ′

i = max(∆Pi, ∆Pi+1).

ence of 3 ∗MSS is a heuristic that accommodates variations
due to delayed acknowledgments and assumes that the MSS
need not divide the advertised window evenly.

Sender Window Limited: Let SFmed
and SF80

be the
median and the 80th percentile of the flight sizes. A flow
is considered sender window limited if the following three
conditions are met. First, the flow is not receiver window
limited, congestion limited, or bandwidth limited. Second,
SF80

< SFmed
+3. Finally, there are four consecutive flights

with flight sizes between SF80
− 2 and SF80

+ 1.
Opportunity Limited: A flow is deemed opportunity

limited if the total number of bytes transferred is less than
13 ∗ MSS or if it never exits slow-start. The limit of 13 is
needed because it is difficult to recognize slow-start behavior
with fewer than 13 packets.

Application Limited: A flow is application limited if a
packet smaller than the MSS was transmitted followed by a
lull greater than the RTT, followed by additional data.

Transport Limited: A flow is transport limited if the
sender has entered congestion avoidance, does not experi-
ence any loss, and the flight size continues to grow.

T-RAT is not able to identify unambiguously the rate lim-
iting behaviors in all cases. Therefore, the tool reports two
additional conditions.

Host Window Limited: The connection is determined
to be limited by either the sender window or the receiver
window, but the tool cannot determine which. When ac-
knowledgments are not present and the flow passes the sender
window limited test above, it is classified as host window
limited.

Unknown Limited: The tool is unable to match the
connection to any of the specified behaviors.

5. VALIDATION
Before using T-RAT to analyze the rate limiting factors

for TCP flows in our packet traces, we first validated it
against measurement data as well as simulations. Specifi-
cally, we compared T-RAT’s round trip time estimation to
estimates provided by tcpanaly [15] over the NPD N2 [18]
dataset.4 Accurate RTT estimation is a fundamental com-
ponent of the tool since making a rate-limit determination
is in most cases not possible without being able to group
packets into flights. Once we validated the RTT estimation,
we then needed to determine whether the rate analyzer re-
turned the right answer. Validating the results against ac-
tual network traffic is problematic. After all, that is the
problem we intend to solve with this tool. Thus, we val-
idated T-RAT against packet traces produced by network
simulations and by controlled network experiments in which
we could determine the specific factors that limited each
flow’s transmission rate.

5.1 RTT validation
The NPD N2 dataset contains packet traces for over 18, 000

TCP connections. We used 17, 248 of these in which packets
were captured at both ends of the connections, so the dataset
contains data and acknowledgment packets recorded at both
the sender and receiver. We ran tcpanaly over this data and

4tcpanaly requires traces of both directions of a connection.
Therefore, we can use it to validate our tool using 2-way
traces, but it cannot address the RTT estimation problem
when only a single direction of the connection is available.
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Figure 9: RTT validation against NPD N2 data

recorded for each connection the median of the RTT esti-
mates it produced. We used these medians to compare to
the performance of the RTT estimation of T-RAT.

Even though the NPD data includes both directions of
connections, we tested our RTT estimation using only a
single direction at a time (since the algorithm is designed
to work in such cases.) Hence, we consider separately the
cases in which the tool sees the data packets at the sender,
acknowledgment packets at the sender, data packets at the
receiver and acknowledgment packets at the receiver. For
each RTT estimate computed by T-RAT we measure its ac-
curacy by comparing it to the value produced by tcpanaly.

The results of the RTT validation are shown in Figure 9,
which plots the CDF of the ratio between the two values for
each of the 4 cases. The figure shows that with access to the
data packets at either the sender or the receiver, for over
90% of the traces the estimated RTT is accurate within a
factor of 1.15, and for over 95% of the traces the estimated
RTT is accurate within a factor of 1.3. Accuracy of RTT
estimates based on the acknowledgment stream, while still
encouraging, is not as good as data stream analysis. In
particular, with ack-based analysis at the receiver, 90% of
estimates are accurate within a factor of 1.3 and 95% of
traces are accurate within a factor of 1.6. Using the sender-
side acknowledgment stream, estimates are accurate within
a factor of 1.6 about 90% of the time. We suspect that de-
layed acknowledgments may be in part responsible for the
inferior RTT estimation using the acknowledgment stream.
By reducing the number of packets observable per RTT and
perturbing the timing of some packets, they may make the
job of RTT estimation more difficult. Further, we speculate
that the sender side performance with acknowledgments also
suffers because the acknowledgments at the sender have tra-
versed an extra queue and are therefore subject to additional
variation in the network delays they experience.

Previous studies have used the round trip time for the
initial TCP SYN-ACK handshake as an estimate of per-
connection round trip time [6, 11]. We also compared this
value to the median value produce by tcpanaly. As shown in
Figure 9, this estimate is significantly worse than the others.
In general, the SYN-ACK handshake tends to underestimate
the actual round trip time.

The overall results produced by our tool are encourag-
ing. They show that RTT estimation works reasonably well
in most cases. The real question, however, is how the rate
analyzer works. Are the errors in RTT estimation small

enough to allow the tool to properly determine a rate lim-
iting factor, or do the errors prevent accurate analysis? We
now turn to the question of the validity of the rate limiting
factors.

5.2 Rate Limit Validation
We validated the rate limit results of T-RAT using both

simulations and experiments in a controlled testbed. In our
simulations, we used the ns simulator [13]. By controlling
the simulated network and endpoint parameters we created
TCP connections that exhibited various rate limiting behav-
iors. For example, congested limited behavior was simulated
using several infinite source FTP connections traversing a
shared bottleneck link, and application limited behavior was
simulated using long-lived Telnet sessions. Our simulations
included approximately 400 connections and 340,000 pack-
ets. T-RAT correctly identified the proper rate limiting be-
havior for over 99% of the connections.

While these simulations provided positive results about
the performance of T-RAT, they suffered from several weak-
nesses. First, we were not able to validate all of the rate
limiting behaviors that T-RAT was designed to identify. In
particular, the TCP implementation in ns does not include
the advertised window in TCP packets, preventing experi-
ments that exhibited receiver window limited behavior. Sec-
ond, the simulations varied some relevant parameters, but
they did not explore the parameter space in a systematic
way. This left us with little knowledge about the limits of
the tool. Finally, simulations abstract away many details of
actual operating system and protocol performance, leaving
questions about how the tool would perform on real systems.

To further validate the performance of T-RAT we con-
ducted experiments in a testbed consisting of PCs running
the FreeBSD 4.3 operating system. In these experiments,
two PCs acting as routers were connected by a bottleneck
link. Each of these routers was also connected to a high
speed LAN. Hosts on these LANs sent and received traffic
across the bottleneck link. We used the dummynet [19] facil-
ity in the FreeBSD kernel to emulate different bandwidths,
propagation delays and buffer sizes on the bottleneck link.
We devised a series of experiments intended to elicit vari-
ous rate limiting behaviors, captured packet traces from the
TCP connections in these experiments using tcpdump, ana-
lyzed these traces using T-RAT, and validated the results
reported by T-RAT against the expected behavior. Un-
less otherwise noted, the bandwidth, propagation delay, and
buffer size on the emulated link were 1.5 Mbps, 25 msec, and
20 KBytes, respectively. We used an MTU of 540 bytes on
all interfaces, allowing us to explore a wider range of win-
dow sizes (in terms of packets) than would be afforded with
a larger MTU.

For some of the rate limiting behaviors, we captured TCP
connections on both unloaded and loaded links. In order to
produce background load, we generated bursts of UDP traf-
fic at exponentially distributed intervals. The burst size was
varied from 1 to 4 packets across experiments, and the aver-
age inter-burst interval was 30 msec, generating 10%, 20%,
30% and 40% load on the link. This was not intended to
model realistic traffic. Rather the intention was to perturb
the timing of the TCP packets and assess the effect of this
perturbation on the ability of T-RAT to identify correctly
the rate limiting behavior in question.

Experiments were repeated with and without delayed ac-



knowledgments. All TCP packets were captured at both
endpoints of the connection. We tested T-RAT using only
a single direction of a connection at a time (either data or
acknowledgment) to emulate the more challenging scenario
of only observing one direction of a connection. Thus, for
each connection we made four independent assessments us-
ing data packets at the source, data packets at the destina-
tion, acknowledgment packets at the source, and acknowl-
edgment packets at the destination.

For each behavior we varied parameters in order to assess
how well T-RAT works under a range of conditions. Our
exploration of the relevant parameter space is by no means
exhaustive, but the extensive experiments we conducted give
us confidence about the operation of the tool.

In the vast majority of cases T-RAT correctly identified
the dominant rate limiting factor. That is, for a given con-
nection, the majority of periodic determinations made by
T-RAT were correct. Further, for many connections, all of
the periodic determinations were correct. In what follows,
we summarize the experiments and their results, focusing
on those cases that were most interesting or problematic.5

Receiver Window Limited: In these experiments, the
maximum advertised receiver window was varied (by adjust-
ing the receiver’s socket buffer) for each connection, while
the sender’s window was larger than the bandwidth delay
product of the link (and hence did not impact the sender’s
window.) The parameters of the bottleneck link were such
that a window size of 18 packets saturated the link. We
tested window sizes between 2 and 20 packets with no back-
ground load. Even when the link was saturated, there was
sufficient buffering to prevent packet loss. With background
load, we only tested window sizes up to 10 packets to avoid
loss due to congestion. A 5 MByte file was transferred for
each connection.

T-RAT successfully identified these connections as receiver
window limited (using the acknowledgement stream) and
host window limited (using the data stream) in most cases.
Using the data stream, it did not correctly identify window
sizes of 2 packets as receiver window limited. It is not pos-
sible to disambiguate this case from a bandwidth limited
connection captured upstream of the bottleneck link when
delayed acknowledgments are present. In both cases, the
trace shows periodic transmission of a burst of 2 packets
followed by an idle period. We would not expect receiver
window limits to result in flight sizes of 2 packets, so we are
not concerned about this failure mode.

T-RAT was able to identify a wide range of window sizes
as receiver window limited (or host window limited using
data packets.) As the number of packets in flight approaches
the saturation point of the link, and as a consequence the
time between successive flights approaches the inter-packet
time, identifying flight boundaries becomes more difficult.
When the tool had access to the data stream, it correctly
identified the window limit until the link utilization ap-
proached 80%-90% of the link bandwidth. Beyond that it
identified the connection as bandwidth limited. With access
to the acknowledgment stream, the tool correctly identified
the behavior as receiver window limited until the link was
fully saturated.

As we applied background traffic to the link, the domi-
nant cause identified for each connection was still receiver

5More detailed information about the results is available at
http://www.research.att.com/projects/T-RAT/.

window limited for acknowledgement and host window lim-
ited for data packets. However, for each connection T-RAT
sometimes identified a minority of the periodic determina-
tions as transport limited when it had access to the data
packets. With access to the acknowledgment packets, virtu-
ally all of the periodic determinations were receiver window
limited. Thus, the advertised window information available
in acknowledgments made T-RAT’s job easier.

Sender Window Limited: These experiments were iden-
tical to the previous ones with the exception that in this case
it was the sender’s maximum window that was adjusted
while the receiver window was larger than the bandwidth
delay product of the bottleneck link.

The results were very similar to the those in the receiver
window limited experiments. The tool was again unable to
identify flight sizes of 2 packets as sender window limited
(which in practice should not be a common occurrence.) T-
RAT was able to identify window sizes as large as 80-90%
of the link bandwidth as sender window limited. Beyond
that it had trouble differentiating the behavior from band-
width limited. Finally, as background load was applied to
the link, the tool still correctly identified the most common
rate limiting factor for each connection, though it sometimes
confused the behavior with transport limited.

Transport Limited: To test transport limited behavior,
in which the connection does congestion avoidance while not
experiencing loss, we set the bottleneck link bandwidth to
10 Mbps and the one-way propagation delay to 40 msec,
allowing a window size of more than 180 packets (recall
we used a 540 byte MTU). In addition, we set the initial
value of ssthresh to 2000 bytes, so that connections transi-
tioned from slow-start to congestion avoidance very quickly.
With no background traffic, each connection transferred a 4
MByte file. Without delayed acknowledgments, the window
size reached about 140 packets (utilizing 75% of the link)
before the connection terminated. When we tested this be-
havior in the presence of background load, each connection
transferred a 2.5 MByte file and achieved a maximum win-
dow size of approximately 100 packets (without delayed ac-
knowledgments). The smaller file size was chosen to prevent
packet loss during the experiments. The experiments were
repeated 10 times for each set of parameters.

T-RAT successfully identified transport limited as the dom-
inant rate limiting cause for each connection. It made errors
in some of the periodic determinations, with the errors be-
coming more prevalent as the burst size of the background
traffic increased. Whenever T-RAT was unable to deter-
mine the correct rate limiting behavior, its estimate of the
RTT was incorrect. However, correct RTT estimation is
not always necessary. In some cases, the tool was robust
enough to overcome errors in the RTT estimation and still
determine the proper rate limiting behavior. In assessing
transport limited behavior, T-RAT was more successful us-
ing data packets than acknowledgment packets, particularly
when delayed acknowledgments were used. In contrast to
the receiver window limited case above, the acknowledgment
packets provide no additional information, and by acknowl-
edging only half of the packets, T-RAT has less information
with which to work.

Bandwidth Limited: In these experiments, a 10 MByte
file was transferred across the bottleneck link with no com-
peting traffic. The router buffer was large enough to avoid
packet loss, and the sender and receiver windows were large



enough to allow connections to saturate the link. We tested
bottleneck link bandwidths of 500 Kbps, 1.5 Mbps, and 10
Mbps, with and without delayed acknowledgments. Each
experiment was repeated 10 times.

In the vast majority of cases, T-RAT properly identified
the rate limiting behavior. There are two points to make
about these results. First, the RTT estimation produced
by the tool was often incorrect. For a connection that fully
saturates a bottleneck link, and is competing with no other
traffic on that link, the resulting packet trace consists of
stream of evenly spaced packets. There is, therefore, lit-
tle or no timing information with which to accurately esti-
mate RTT. Nonetheless, the test for bandwidth limiting be-
havior depends primarily on the distribution of inter-packet
times and not on proper estimation of the flight size, so the
tool still functions properly. The second observation about
these experiments is that the connections were not exclu-
sively bandwidth limited. Rather, they started in congestion
avoidance (ssthresh was again set to 2000 bytes) and opened
the congestion window, eventually saturating the link. The
tool identified the connections as initially transport limited,
and then as bandwidth limited once the bottleneck link was
saturated. Visual inspection of the traces revealed that the
tool made the transition at the appropriate time. In a few
instances, the tool was unable to make a rate limiting deter-
mination during the single interval in which the connection
transitioned states, and deemed the rate limiting behavior
to be unknown.

Congestion Limited: Congestion limited behavior was
tested by transferring 5 MByte files across the bottleneck
link with random packet loss induced by dummynet. Tests
were repeated with both 2% and 5% loss on the link in a
single direction and in both directions. As with our other
experiments, we repeated tests with and without delayed
acknowledgments, and we repeated 5 transfers in each con-
figuration.6

In nearly all cases, T-RAT identified these connections
as congestion limited across all loss rates, acknowledgment
strategies, and directionality of loss. For a very small num-
ber of the periodic assessments, connections were deemed
transport limited. However, a connection that does not ex-
perience any loss over some interval will be in congestion
avoidance mode and will be appropriately deemed transport
limited. Visual inspection of a sample of these instances
showed that this was indeed the case.

Opportunity Limited: In these experiments, we varied
the amount of data transferred by each connection from 1
to 100 packets. The connection sizes and link parameters
were such that the sources never left slow-start. However,
at the larger connection sizes, the congestion window was
large enough to saturate the link. Hence, while the source
remained in slow-start, this was not always obvious when
examining packet traces.

We first review the results without delayed acknowledg-

6We also performed the more obvious experiment in which
multiple TCP connections were started simultaneously with
loss induced by the competing TCPs. However, an apparent
bug in the version of TCP we used sometimes prevented a
connection from ever opening its congestion window after
experiencing packet loss. Validating these results was more
difficult since the TCP connections experienced a range of
rate limiting factors (congestion, host window, transport.)
Nonetheless, visual inspection of those results also indicated
that the tool was properly identifying cases of congestion.

ments. Using the trace of data packets at the source, T-RAT
correctly identified all of the connections as opportunity lim-
ited. In the other 3 traces, T-RAT identified between 83 and
88 of the connections as opportunity limited. Most of the
failures occurred at connection sizes greater than 80 pack-
ets, with a few occurring between 40 and 60 packets. None
occurred for connection sizes less than 40 packets. When it
failed, T-RAT deemed the connections either transport or
bandwidth limited. These cases are not particularly trou-
bling, as the window sizes are larger than we would expect
to see with regularity in actual traces. With delayed ac-
knowledgments, T-RAT reached the right conclusion in 399
out of 400 cases, failing only for a single connection size with
acknowledgments at the receiver.

Application Limited: Characterizing and identifying
application limited traffic is perhaps more challenging than
the other behaviors we study. The test T-RAT uses for ap-
plication limited traffic is based on heuristics about packet
sizes and inter-packet gaps. However, there are certainly
scenarios that will cause the tool to fail. For example, an
application that sends constant bit rate traffic in MSS-sized
packets will likely be identified as bandwidth limited. Fur-
ther, since this traffic is by definition limited by the applica-
tion our tool needs to recognize a potentially wider range of
behaviors than with the other limiting factors. Understand-
ing the range of application limited traffic in the Internet
remains a subject for future study.

In our effort to validate the current tests for application
limited traffic in T-RAT we had the application generate ap-
plication data units (ADUs) at intervals separated by a ran-
dom idle times chosen from an exponential distribution. We
tested connections with average idle times of 1, 2, 3, 10, 20,
30, 50 and 100 msec. Furthermore, rather than generating
MSS-sized ADUs as in our other experiments, we chose the
size of the ADUs from a uniform distribution between 333
and 500 bytes, the latter being the MSS in our experiments.
The resulting application layer data generation rates would
have been between 3.3 Mbps (1 msec average idle time) and
33 kbps (100 msec idle time) without any network limits. In
our case (1.5 Mbps bottleneck bandwidth) the highest rates
would certainly run into network limits. Since we did not
use MSS-sized packets, the resulting network layer traffic
depended on whether or not the TCP Nagle algorithm [12],
which coalesces smaller ADUs into MSS-sized packets, is
employed. Hence, in addition to repeating experiments with
and without delayed acknowledgments, we also repeated the
experiments with and without the Nagle algorithm turned
on.

Assessing the results of these experiments was difficult.
Given that we used a stochastic data generation process,
and that one cannot know a priori how this random process
will interact with the transport layer, we could not know
what the resulting network traffic would look like. Without
a detailed packet-by-packet examination, the best we can do
is to make qualitative characterizations about the results.

With the Nagle algorithm turned on, T-RAT character-
ized the two fastest data generation rates (3.3 Mbps and
1.65 Mbps) as a combination of congestion and bandwidth
limited. This is what one would expect given the bottleneck
link bandwidth. At the lowest data rates (33 Kbps and 66
Kbps) T-RAT deemed the traffic to be application limited.
This is again consistent with intuition. In between, (from
110 Kbps to 1.1 Mbps) the traffic was characterized vari-
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Figure 10: Fraction of bytes for each rate limiting factor
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Figure 11: Fraction of flows for each rate limiting factor

ously as transport, host window, application, or unknown
limited.

With the Nagle algorithm disabled, the fastest generation
rates were again characterized as congestion and bandwidth
limited. At all the lower rates (1.1 Mbps down to 33 Kbps),
T-RAT deemed the connections as exclusively application
limited when using the data stream, and a combination of
application and transport limited when using the acknowl-
edgment stream. Thus, application limited behavior is easier
to discern when the Nagle algorithm is turned off.

6. RESULTS
The results of applying T-RAT to the 8 packet traces are

shown in Figure 10. For each trace, the plot shows the
percentage of bytes limited by each factor. The 4 traces
taken from access links are able to differentiate between
sender and receiver limited flows since they see data and
acknowledgment packets for all connections. The peering

and regional traces, on the other hand, often only see one
direction of a connection and are therefore not always able
to differentiate between these two causes. We have aggre-
gated the 3 categories identified by T-RAT—sender, receiver
and host window limited—into a single category labeled
“Host/Sndr/Rcvr” limited in the graph.

As shown in Figure 10, the most common rate limiting
factor is congestion. It accounts for between 22% and 43%
of the bytes in each trace, and is either the first or second
most frequent cause in each trace. The aggregate category
that includes sender, receiver and host window limited is
the second most common cause of rate limits accounting
for between 8% and 48% of the bytes across traces. When
we were able to make a distinction between sender and re-
ceiver window limited flow (i.e., when the trace captured
the acknowledgment stream), receiver window limited was
a much more prevalent cause than sender window limited,
by ratios between 2:1 and 10:1. Other causes—opportunity
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Figure 12: Rate distribution by rate limiting fac-
tor, Access1b trace
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Figure 13: Size distribution by rate limiting fac-
tor, Access1b trace
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Figure 14: Duration distribution by rate limiting
factor, Access1b trace

limited, application limited and transport limited—usually
accounted for less than 20% of the bytes. Bandwidth lim-
ited flows accounted for less than 2% of the bytes in all
traces (and are not shown in the plot). For most traces,
the unknown category accounted for a very small percent-
age of the bytes. We examined the 2 traces in which the
rate limiting cause for more than 5% of the bytes was un-
known and identified 3 factors that prevented the tool from
making a rate limiting determination. First, T-RAT can-
not accurately estimate round trips on the order of 3 msec
or less, and therefore, cannot determine a rate limiting fac-
tor for these connections. Second, when the traces were
missing packets in the middle of a connection (which may
have resulted either from loss at the packet filter or from
multi-path routing) estimating the round trip time and the
rate limiting cause becomes difficult. Finally, multiple web
transfers across a persistent TCP connection also presented
problems. When one HTTP transfer uses the congestion
window remaining from the end of the previous transfer a
moderate size file may not be opportunity limited (because
it is larger than 13 packets and it never enters slow-start)
and it may not have enough flights (because the initial flight
size is large) for T-RAT to make a rate limit determination.

Not surprisingly, when we look at rate limiting factors by
flows rather than bytes, the results are very different. Recall
that we continuously update the reason a flow is limited, and
a single flow may have multiple limiting factors throughout

its lifetime. For example, it may be congestion limited for
one interval, and after congestion dissipates, become win-
dow limited. In those cases when a flow experienced mul-
tiple causes, we classified it by the factor that most often
limited its transmission rate. Figure 11 shows the percent-
age of flows constrained by each rate limiting factor for the 8
traces. The most common per-flow factors are opportunity
and application limited. Collectively, they account for over
90% of the flows in each of the 8 traces, with opportunity
limited accounting for more than 60% and application lim-
ited accounting for between 11% and 34%. No other cause
accounted for more than 4% of the flows in any trace. These
results are consistent with the results reported in Section 3.
Namely, most flows are small and slow. Small flows are
likely opportunity limited (they don’t have enough packets
to test buffer or network limits), and slow flows are likely
application limited (not sending fast enough to test buffer
or network limits.)

A general trend is evident when comparing the traces
taken at access links to those taken at the peering and re-
gional links. The former tend to have a higher percentage
of bytes that are window limited. The access links are high
speed links connecting a site to the Internet. As such, they
support a population with good connectivity to the Internet.
The other links are likely seeing a more general cross section
of Internet users, some of whom are well-connected and oth-
ers of whom are not. Since window limits are reached when
the bandwidth delay product exceeds buffer resources, the
well-connected users are more likely to reach these limits.
This difference between the two kinds of traces was evident
in Figure 1. That graph shows that the distribution of rates
has a longer tail for the access links than for the regional
and peering links.

We next ask whether these different rate limiting factors
can be associated with different performance for users. Fig-
ure 12 plots the CDF of the rates for each of the rate limiting
factors for the Access1b trace. The graph shows very dis-
tinct differences between subgroups. Overall, receiver lim-
ited and transport limited flows have the largest average
rates, followed by congestion limited, application limited
and opportunity limited. This same trend was exhibited
across the other 7 traces. Figures 13 and 14 plot the distri-
butions of size and duration for each rate limiting factor in
the Access1b trace. Receiver limited flows have the largest
size distribution, followed by transport and congestion lim-



ited. In the duration distribution, congestion limited flows
have the longest duration, which is consistent with the ob-
servation that flows experiencing congestion will take longer
to transmit their data than flows not experiencing conges-
tion.

7. CONCLUSION
The rates at which flows transmit data is an important

and not well-understood phenomenon. The rate of a flow
can have a major impact on user experience, and the rates
of flows traversing the Internet can have a significant effect
on network control algorithms. We had two goals in this
paper. First, we wanted to better understand the charac-
teristics of flow rates in the Internet. Using packet traces
and summary flow statistics we examined the rates of flows
and the relationship between flow rates and other flow char-
acteristics. We found that fast flows are responsible for most
of the bytes transmitted in the Internet, so understanding
their behavior is important. We also found a strong corre-
lation between flow rate and size, suggesting an interaction
between bandwidth available to a user and what the user
does with that bandwidth.

Our second goal was to provide an explanation of the rea-
sons why flows transmit at the rates they do. This was
an ambitious goal, and we have by no means completely
answered this question. We have seen, for a set of Inter-
net packet traces, the reasons that flows are limited in their
transmission rates and have looked at differences among dif-
ferent categories of flows. We believe our main contribution,
however, is to open up an area of investigation that can lead
to valuable future research. The tool we developed to study
rate limiting behavior provides a level of analysis of TCP
connections that can answer previously unanswerable ques-
tions. Thus, our tool has applicability beyond the set of
results we have obtained with it thus far.
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