
1

Recent LBL Forensics
<removed from on-line slides due to potential

sensitivities with a current incident>

2

Exploiting Underlying Structure for
Detailed Reconstruction of an

 Internet-scale Event

Abhishek Kumar (Georgia Tech / Google)
Vern Paxson (ICSI)

Nicholas Weaver (ICSI)

Proc. ACM Internet Measurement Conference 2005

Enhancing Telescope Imagery

NGC6543: Chandra X-ray Observatory Center (http://chandra.harvard.edu)

3

Enhancing Telescope Imagery

NGC6543: Chandra X-ray Observatory Center (http://chandra.harvard.edu)

The “Witty” Worm
• Released March 19, 2004.
• Exploited flaw in the passive analysis of

Internet Security Systems products
• Worm fit in a single Internet packet

– Stateless: When scanning, worm could “fire and
forget”

• Vulnerable pop. (12K) attained in 75 minutes.
• Payload: slowly corrupt random disk blocks.
• Flaw had been announced the previous day.
• Written by a Pro.

4

What Exactly Does Witty Do?

1. Seed the PRNG using system uptime.
2. Send 20,000 copies of self to randomly

selected destinations.
3. Open physical disk chosen randomly

between 0 .. 7.
4. If success:
5. Overwrite a randomly chosen block on

this disk.
6. Goto line 1.
7. Else:
8. Goto line 2.

Witty Telescope Data

• UCSD telescope recorded every Witty
packet seen on /8 (224 addresses).
– But with unknown losses

• In the best case, we see ≈ 4 of every
1,000 packets sent by each Witty
infectee.

? What can we figure out about the worm?

5

Generating (Pseudo-)Random Numbers

• Linear Congruential Generator (LCG)
proposed by Lehmer, 1948:

Xi+1 = Xi*A + B mod M

• Picking A, B takes care, e.g.:
A = 214,013
B = 2,531,011
M = 232

• Theorem: the orbit generated by these is a
complete permutation of 0 .. 232-1

• Another theorem: we can invert this generator

srand(seed) { X ← seed }
rand() { X ← X*214013 + 2531011; return X }

main()
1. srand(get_tick_count());
2. for(i=0;i<20,000;i++)
3. dest_ip ← rand()[0..15] || rand()[0..15]
4. dest_port ← rand()[0..15]
5. packetsize ← 768 + rand()[0..8]
6. packetcontents ← top-of-stack
7. sendto()
8. if(open_physical_disk(rand()[13..15]))
9. write(rand()[0..14] || 0x4e20)
10. goto 1
11. else goto 2

6

What Can We Do Seeing Just
4 Packets Per Thousand?

• Each packet contains bits from 4 consecutive PRNGs:
3. dest_ip ← rand()[0..15] || rand()[0..15]

4. dest_port ← rand()[0..15]

5. packetsize ← 768 + rand()[0..8]

• If first call to rand() returns Xi :
3. dest_ip ← (Xi)[0..15] || (XI+1)[0..15]

4. dest_port ← (XI+2)[0..15]

• Given top 16 bits of Xi, now brute force all possible
lower 16 bits to find which yield consistent top 16
bits for XI+1 & XI+2

⇒ Single Witty packet suffices to extract infectee’s
complete PRNG state! Think of this as a
sequence number.

Cool, But So What?

• E.g., Individual Access Bandwidth Estimation
– Suppose two consecutively-observed packets

from source S arrive with states Xi and Xj
– Compute j-i by counting # of cranks forward from

Xi to reach Xj
– # packets sent between the two observed = (j-i)/4
– sendto call in Windows is blocking
– Ergo, access bandwidth of that infectee should be

 (j-i)/4 * size-of-those-packets / ΔT

– Note: works even in the presence of very heavy
packet loss

7

Inferred Access Bandwidth of
Individual Witty Infectees

Precise Bandwidth Estimation vs.
Rates Measured by Telescope

8

Systematic Telescope Loss
Measuring Effective Bandwidth

Can we estimate its magnitude?

Precise Bandwidth Estimation vs.
Rates Measured by Telescope

Peaks are 30% off
of actual diagonal
= systematic loss

9

Calibration via comparison:
Two Telescopes & Access BW

Calibration via comparison:
Two Telescopes & Effective BW

10

Telescope Bias

srand(seed) { X ← seed }
rand() { X ← X*214013 + 2531011; return X }

main()
1. srand(get_tick_count());
2. for(i=0;i<20,000;i++)
3. dest_ip ← rand()[0..15] || rand()[0..15]

4. dest_port ← rand()[0..15]

5. packetsize ← 768 + rand()[0..8]

6. packetcontents ← top-of-stack
7. sendto()
8. if(open_physical_disk(rand()[13..15]))
9. write(rand()[0..14] || 0x4e20)
10. goto 1
11. else goto 2

} 4 calls to rand()
per loop

} Plus one more every 20,000
packets, if disk open fails …

} … Or complete reseeding if not

11

Witty Infectee Reseeding Events

• For packets with state Xi and Xj:
– If from the same batch of 20,000 then

• j - i = 0 mod 4
– If from separate but adjacent batches, for

which Witty did not reseed, then
• j - i = 1 mod 4
 (but which of the 100s/1000s of intervening packets

marked the phase shift?)

– If from batches across which Witty
reseeded, then no apparent relationship.

12

13

14

15

16

17

18

We Know Intervals in Which Each
First-Seed Packet Occurs ….

• … but which among the 1,000s of
candidates are the actual seeds?

• Entropy isn’t all that easy to come by …
• Consider

 srand(get_tick_count())
i.e., uptime in msec

• The values used in repeated calls
increase linearly with time

19

20

21

Slope = 1000/sec

Time back to X-intercept
= uptime

22

Uptime of 750 Witty Infectees

?

Uptime of 750 Witty Infectees

23

Given Exact Values
of Seeds Used for Reseeding …

• … we know exact random # used at each
subsequent disk-wipe test:
 if(open_physical_disk(rand()[13..15])

• … and its success, or failure, i.e., number of
drives attached to each infectee …

• … and, more, generally, every packet each
infectee sent
– Can compare this to when new infectees show up
– i.e. Who-Infected-Whom

Disk Drives Per Witty Infectee

0

10

20

30

40

50

60

1 2 3 4 5 6 7

% Infectees w/ # Drives?

24

Disk Drives Per Witty Infectee

0

10

20

30

40

50

60

1 2 3 4 5 6 7

% Infectees w/ # Drives

Given Exact Values
of Seeds Used for Reseeding …

• … we know exact random # used at each
subsequent disk-wipe test:

 if(open_physical_disk(rand()[13..15])

• … and its success, or failure, i.e., number of
drives attached to each infectee …

• … and, more, generally, every packet each
infectee sent
– Can compare this to when new infectees show up
– i.e. Who-Infected-Whom

25

Time Between Scan by Known Infectee
and New Source Arrival At Telescope

Too
Early

Too
Late

Right on Time

Infection Attempts That Were
Too Early, Too Late, or Just Right

Infector/Infectee
Signature

26

Witty is Incomplete

• Recall that LCD PRNG generates a complete orbit over
a permutation of 0..232-1.

• But: Witty author didn’t use all 32 bits of single PRNG
value
– dest_ip ← (Xi)[0..15] || (XI+1)[0..15]

– Knuth recommends top bits as having better pseudo-random
properties

• But2: This does not generate a complete orbit!
– Misses 10% of the address space
– Visits 10% of the addresses (exactly) twice

• So, were 10% of the potential infectees protected?

Time When Infectees Seen At Telescope

Doubly-scanned infectees
infected faster

Unscanned infectees
still get infected!

In fact, some are infected
Extremely Quickly!

27

How Can an Unscanned Infectee
Become Infected?

• Multihomed host infected via another address
– Might show up with normal speed, but not early

• DHCP or NAT aliasing
– Would show up late, certainly not early

• Could they have been passively infected
extra quickly because they had large cross-
sections?

• Just what are those hosts, anyway?

Uptime of 750 Witty Infectees

Part of a group of 135
infectees from same /16

28

Time When Infectees Seen At Telescope

Most also belong to that /16

Analysis of the Extra-Quick Hosts

• Initial infectees exhibit super-exponential growth ⇒
they weren’t found by random scanning

• Hosts in prevalent /16 numbered x.y.z.4 in
consecutive /24 subnets

• “Lineage” analysis reveals that these subnets not
sufficiently visited at onset to account for infection

• One possibility: they monitored networks separate
from their own subnet

• But: if so, strange to number each .4 in adjacent
subnets …

⇒ Unlikely infection was due to passive monitoring …

29

Alternative:
Witty Started With A “Hit List”

• …Unlikely infection was due to passive
monitoring …

• Prevalent /16 = U.S. military base
• Attacker knew of ISS security software

installation at military site ⇒ ISS insider
 (or ex-insider)

• Fits with very rapid development of worm
after public vulnerability disclosure

Are All The Worms In Fact
Executing Witty?

• Answer: No.
• There is one “infectee” that probes addresses

not on the orbit.
• Each probe contains Witty contagion, but lacks

randomized payload size.
• Shows up very near beginning of trace.
 ⇒ Patient Zero - machine attacker used to launch

 Witty. (Really, Patient Negative One.)

• European retail ISP.
• Information passed along to Law Enforcement.

30

Summary of
Witty Telescope Forensics

• Understanding a measurement’s underlying
structure adds enormous analytic power

• Cuts both ways: makes anonymization much
harder than one would think

• With enough effort, worm “attribution” can be
possible

– But a lot of work

– And no guarantee of success

