
Providing Dynamic Control to
Passive Network Security Monitoring

Johanna Amann1 and Robin Sommer1,2

1 International Computer Science Institute
2 Lawrence Berkeley National Laboratory

Abstract. Passive network intrusion detection systems detect a wide
range of attacks, yet by themselves lack the capability to actively respond
to what they find. Some sites thus provide their IDS with a separate control
channel back to the network, typically by enabling it to dynamically
insert ACLs into a gateway router for blocking IP addresses. Such setups,
however, tend to remain narrowly tailored to the site’s specifics, with little
opportunity for reuse elsewhere, as different networks deploy a wide array
of hard- and software and differ in their network topologies. To overcome
the shortcomings of such ad-hoc approaches, we present a novel network
control framework that provides passive network monitoring systems with
a flexible, unified interface for active response, hiding the complexity of
heterogeneous network equipment behind a simple task-oriented API.
Targeting operational deployment in large-scale network environments,
we implement the design of our framework on top of an existing open-
source IDS. We provide exemplary backends, including an interface to
OpenFlow hardware, and evaluate our approach in terms of functionality
and performance.

1 Introduction

Network intrusion detection and prevention systems (IDS and IPS, respectively)
detect a wide range of attacks, including port- and address scans for recon-
naissance, SSH brute-forcing, attempts to exploit specific vulnerabilities (e.g.,
Heartbleed), and also complex multi-step APT-style attacks. An IPS operates in-
line within the network’s forwarding path, enabling the system to actively react to
an intrusion by, e.g., blocking the specific connection or more generally any traffic
originating from the same IP address. Operationally, however, inline operation
often remains impractical, as it adds a complex device into the forwarding path
that increases latencies and jitter, and risks causing disruption if malfunctioning.
Furthermore, for the largest of environments—such as the quickly growing set
of 100G Science DMZs [20]—arguable no IPS (or firewall) can today operate
at their line rates at all [9]. More commonly, network environments thus deploy
a passive IDS instead, operating out-of-band on an independent copy of the
network traffic coming from a tap or SPAN port. To still support active response
in that setting, some sites then provide their IDS with a separate control channel
back to the network, most typically by having it dynamically insert ACLs or null

routes into a gateway router for blocking IP addresses. Such setups, however,
tend to remain narrowly tailored to the site’s network topology and the specific
equipment it deploys, offering little opportunity for reuse elsewhere and posing
challenges for testing, maintenance, and extension.

To overcome the shortcomings of such ad-hoc approaches, we present a novel
network control framework that provides passive network monitoring systems
with a flexible, unified interface for active response, hiding the complexity of het-
erogeneous network equipment behind a simple task-oriented API. We structure
our network control framework around four low-level traffic control primitives:
dropping, whitelisting, redirection, and modification. From these, we then com-
pose a set of higher-level tasks that an IDS can chose to deploy, such as blocking
IP addresses, shunting traffic for load shedding, quarantining infected hosts,
and enforcing quality-of-service guarantees. Internally, we map the primitives
to rules that the network control framework forwards to a set of preconfigured
backends representing the network’s devices able to carry out the corresponding
actions (e.g., routers, switches, firewalls). When multiple components can execute
a rule, the network control framework automatically selects the most appropriate.
It also transparently unifies inconsistencies between device semantics.

Our framework targets operational deployment in large-scale network envi-
ronments with link capacities of 10G and beyond. We implement the design of
our framework on top of an existing open-source IDS that such environments
commonly deploy. We provide exemplary backends for OpenFlow and acld [1], as
well as a generic backend driving command-line tools (which we demonstrate with
Linux iptables). Using the OpenFlow backend, we evaluate our approach through
case studies involving real-world tasks and traffic. We release our implementation
as open-source software under BSD license [14].

Overall, our work offers a new capability combining the advantages of unobtru-
sive passive monitoring with the ability to actively react swiftly and comprehen-
sively through a unified architecture that can replace today’s ad-hoc setups. While
our discussion focuses primarily on the security domain, the network control
framework’s potential extends more broadly to traffic engineering applications
well, as our quality-of-service use case demonstrates.

We structure the remainder of this paper as follows: §2 discusses use cases
for our system. §3 presents the design of the network control framework, and §4
describes our implementation. §5 introduces the backends that the network control
framework currently supports, and §6 evaluates the framework. §7 discusses the
related work before our paper concludes in §8.

2 Use Cases

We begin by discussing four high-level IDS use-cases that our network control
framework facilitates. Traditionally, a site would implement each of these sepa-
rately, typically with homegrown scripts that cater to their network environment.
The network control framework instead offers a high-level API that supports

these use cases directly, internally breaking them down into lower-level rules that
it then carries out through an appropriate backend.

Dynamic Firewall. The network control framework enables an IDS to
dynamically block traffic that it deems hostile. Typical examples include stopping
a connection exhibiting illegitimate activity, and dropping connectivity for hosts
probing the network. In contrast to a traditional firewall, an IDS can derive such
decisions dynamically by analyzing session content and tracking over time the
state of any entities it observes. For example, the Lawrence Berkeley National
Laboratory (LBNL), a research lab with a staff size of about 4,000 and 100G
connectivity, blocks an average of about 6,000 to 7,000 IPs each day using a
custom setup that interfaces the Bro IDS [17] with their border router through
a separate daemon process, acld [1]. Indiana University, which has more than
100,000 students and multiple 10GE uplinks, blocks an average of 500 to 600 IPs
per day, also using a custom setup processing data from Bro and Snort.

Shunting. Flow shunting [11,7] reduces the load on an IDS by asking the
network to no longer send it further traffic for high-volume connections that it
has identified as benign. In scientific environments, shunting typically targets
large file transfers: once identified as such, there remains little value in inspecting
their content in depth. Shedding the corresponding load leaves more resources
for inspecting the remaining traffic, which in turn then allows a site to provision
less IDS capacity than the full volume would require. Two sites using this
approach effectively are LBNL and UIUC’s National Center for Supercomputing
Applications (NCSA). Both places currently implement shunting for GridFTP
traffic with custom scripts that exploit the specifics of their network environments.
On a typical day in these environments, shunting reduces the total traffic volume
by about 37% and 32%, respectively.

Quarantine. When an IDS identifies a local system as compromised, it
can—as a protective measure—redirect any new connections from that host to
an internal web server that informs the user of the problem. Traditionally, imple-
menting such a quarantine mechanism constitutes a complex task operationally,
as it needs to interact closely with the local network infrastructure. For example,
the Munich Scientific Network (MSN) deploys a custom NAT system [21] for
quarantining that implements the corresponding logic for local end-user systems
by combining a number of existing software components.

Quality-of-Service. Going beyond the security domain, the network con-
trol framework also facilitates more general traffic engineering applications. By
steering traffic to different switch ports or VLANs, one can route entities over
paths with different properties. For example, a Science DMZ might want to
send a high-volume data transfer onto a different virtual circuit that provides
bandwidth guarantees [15]. Another use case is bandwidth throttling. For DDOS
mitigation, one can move a local target server to a different ingress path enforcing
a rate-limit, thereby relieving pressure for the remaining traffic. Likewise, a
network monitor might decide to throttle individual P2P clients that it finds
exceeding their bandwidth quota.

3 Design

In this work, we introduce a network control framework that enables passive
monitoring applications to transparently exercise control over heterogeneous
network components like switches, routers, and firewalls. In this section, we
discuss the design of the network control framework, starting with its overarching
objectives in §3.1.

3.1 Objectives

Our design of the network control framework aims for the following objectives:

Simple, yet flexible API. The network control framework’s API needs
to provide sufficient abstraction to make it straight-forward to use, yet remain
flexible to support a variety of use cases. The API should support common
high-level tasks directly (like blocking and shunting), while leaving lower-level
functionality accessible that enables users to compose their own.

Unification of heterogeneous network components. Sites deploy a
variety of network equipment with different capabilities and semantics. The
network control framework needs to unify their differences through an API that
abstracts from device specifics.

Support for complex topologies. As networks can have complex structures,
the network control framework needs to support instantiating multiple backends
simultaneously, to then chose the most appropriate for each rule. For example,
actions that block traffic might need to address a different device than reducing
the load on the IDS through shunting. Likewise, one device may support a specific
operation better, or more efficiently, than another (e.g., MAC address filtering
vs. IPv6 filtering; or when dropping traffic, being closer to the source).

Unification of forwarding and monitoring path. The network control
framework provides control over both traffic that the network forwards and traffic
that the IDS receives for processing from its tap or SPAN port. Even though
the effect of manipulating them is quite different—rules on the forwarding path
affect end-users, while the monitoring path only changes what the IDS’ analyzes—
the corresponding operations remain conceptually similar. The network control
framework should thus unify the two behind a single interface.

Low latency. The network control framework has to apply new rules rapidly.
The main difference between a passive IDS and an inline IPS is the latency
with which active response takes place. While network control framework can
fundamentally not match an IPS’ instantaneous action, the network control
framework must add as little delay as possible to any latency that the devices
impose that it controls.

3.2 Architecture

Figure 1 shows the overall architecture of the network control framework, located
inside an IDS as a subcomponent. The IDS deploys its standard detection

mechanisms (signatures, analysis scripts, etc.) to asses the traffic it sees. Once
it decides to take action (e.g., block a scanner), it directs the network control
framework to carry that out, using either its high-level API if that supports
the use case directly through one of its operations, or lower-level primitives to
compose non-standard functionality. In the former case, the network control
framework internally maps the high-level API call to a sequence of corresponding
low-level primitives. In either case, it then forwards the primitives to a set of
backends in the form of rules for them to install. Each backend corresponds to a
device on the network able to carry out actions. When operators register their
devices with the network control framework, they provide the corresponding
backend instance with the information how to communicate with the physical
device (e.g., the IP address of an OpenFlow switch), as well as potentially further
context information about the device’s capabilities and location (e.g., the IP
space behind a switch). They also assign each backend a priority. For each new
rule, the network control framework then iterates through all available backends,
from highest priority to lowest priority, until one confirms that it successfully
executed the desired action. If no backend accepts the rule, the operation fails. In
the following subsections, we elaborate further on the main parts of this overall
scheme.

Backend 1

Backend 2

Backend 3

Backend 4
Network
Control

Framework

Network
Monitoring

Engine

Switch

Switch

Router

Firewall

Network Traffic

High level calls or
low-level primitives

Rules

Success,
Failure,
Timeout

Network Control
Framework Backends Device

communication

IDS

Fig. 1: Basic Architecture.

3.3 High-level Operations

The network control framework supports eight predefined high-level operations,
which provide for the most common IDS use cases:

drop_connection(connection, timeout) facilitates dynamic firewalling by ter-
minating a connection through blocking its packets on the forwarding path. It
receives the connection’s 5-tuple as a parameter, as well as a timeout indicating
the duration for the block to stay in place.

drop_address(host, timeout) operates similar to drop_connection(), yet blocks
all traffic to or from a given IP address.

drop_address_catch_release(host, timeout) is a variant of the drop_address()
operation that employs catch-and-release (C&R) [8] to reduce the number of
blocks that the network needs to enforce simultaneously. C&R drops an address
initially for only a short period of time (usually much less than the specified
timeout). However, when that block expires, C&R keeps tracking the offending
IP, and any new connection attempt will trigger an immediate reblock, now for a
longer period of time. The process repeats until it reaches the maximum timeout
duration. In practice, C&R significantly reduces the number of simultaneous
blocks that the network has to support, enabling medium- to long-term blocking
while remaining parsimonious with switch & router memory resources.

shunt_flow(flow, timeout) drops a unidirectional flow (specified in the form of
its 5-tuple) from the monitoring path for a specified duration. This allows, e.g.,
to remove a large file transfer from the IDS’ input stream. As on high-volume
connections the bulk of the data tends to flow in one direction only, this operation
leaves the other side of the session unaffected.

quarantine(Infected, DNS server, Quarantine server, timeout) isolates an
internal host (infected) by blocking all of its traffic except for DNS, which it
reroutes to a Quarantine server running an instrumented DNS server that always
returns the IP address of itself for any hostname lookup. The quarantine server
also runs a web server that can then serve a web page to the host informing end
users of the reason for quarantining them.

redirect(flow, destination port, timeout) redirects a unidirectional flow to a
different output port on a switch. This allows, e.g., to control quality-of-service
properties by steering the traffic to a dedicated port/link.

whitelist(prefix, timeout) whitelists a network prefix so that no other network
control framework operation will affect it. This serves as a safety measure, e.g., to
avoid blocking critical servers or, more generally, IP space from upstream service
providers like Amazon or Google.

All of these operations returns an opaque handle associated with the changes
they put in place. An additional remove(handle) function uninstalls the operation
even before it timeout expires.

3.4 Low-level Primitives

After introducing the high-level operations of the network control framework in
§3.3, this section shows how users can manually create lower-level rules through
a more verbose, but powerful API that directly exposes the primitives underlying
the network control framework.

Generally, a rule describes an action to perform on a traffic subset through a
set of attributes; see Table 1. Each rule consists of three primary components:
(i) the type of action to perform (e.g., drop); (ii) the entity to apply the action
to (e.g., a specific IP address); and (iii) the target network path to operate
on (forwarding or monitoring). The rule type specifies the action to perform

Rule Specification:
Type Type of Rule (Drop, Modify, Redirect, or Whitelist).
Target Rule targets either the Forward or Monitor path.
Entity Entity (IP Address, Mac, Flow or Connection) to match.
Timeout Interval after which the rule is expired (default: No timeout).
Priority Rule priority; higher priority rules take precedence (default: 0).
Mod Modification Specification (mandatory for Modify rules).
RedirectTo Port Specification (mandatory for Redirect rules).
Location String description of Rule. (optional)

Entities:
Address Entity: IP Address Specifies an IP address; traffic from and to address is matched.

MAC Entity: Mac Address Specifies a MAC address; traffic from and to address is matched.

Connection Entity: Source IP, Source Port, Destination IP, Destination Port
Specifies a bi-directional connection by its 5-tuple.

Flow Entity: Src. & Dest. Network, Src. & Dest. Port, Src. & Dest. MAC
Specifies an uni-directional flow; wildcards allowed for all fields.

Modification Specification:
4-tuple Modify any or all of source, destination IP and port. (optional)
Source & Dest. MAC Modify source and/or destination MAC. (optional)
Output port Specify output port (optional).

Table 1: Summary of network control framework rules.

on all of the entity’s traffic, with four choices currently supported: drop (drop
all traffic matching entity), whitelist (leave entity unaffected of any other rule),
redirect (steer entity to a different output port), and modify (change content of
entity’s packets). The network control framework supports five types of entities:
unidirectional flows, bi-directional connections, IP addresses, network prefixes,
and layer-2 MAC addresses. Rules specify flows/connections through their 5-
tuples, with support for wildcards as tuple elements. For IPs, prefixes, and MACs,
a rule always matches any traffic involving that entity, regardless of direction.
In addition to the three mandatory type, entity, and target attributes, Table 1
shows further options that rules support, including: Priority resolves conflicts if
multiple rules match the same traffic; Modify augments modify actions by defining
the change to perform; and RedirectTo specifies the target port. Internally, the
network control framework converts all the high-level operations from §3.3 into
such rules. For example, consider shunt_flow. In this case, the network control
framework creates a rule as follows, dropping all traffic for the specified 5-tuple
on the monitoring path:

Rule(Type=Drop, Entity=Flow([5-tuple]), Target=Monitor)

Implementing quarantine is more complex, with four separate rules:

Rule(Type=Drop, Entity=Flow(SrcIp=[Infected]), Target=Forward)

Rule(Type=Redirect, Priority=1,
Entity=Flow(SrcIP=[Infected], DstIp=[DNS server], DstPort=53/udp),
Modify(DestIp=[Quarantine Srv]), Target=Forward)

Rule(Type=Redirect, Priority=1,
Entity=Flow(SrcIp=[Quarantine Srv], SrcPort=53/udp, DstIp=[Infected]),
Modify(SrcIp=[DNS Server]), Target=Forward)

Rule(Type=Whitelist, Priority=1,
Entity=Flow(SrcIp=[Host], DstIp=[QuarantineHost], DstPort=80/tcp),
Target=Forward)

The first rule blocks all traffic from the infected host using the default priority
of 0. The second and third higher priority rules modify (i) DNS requests from
the quarantined host to go to the dedicated quarantine server, and (ii) DNS
server responses to appear as coming from the original server. The fourth rule
permits port 80 requests from the infected host to the quarantine server.

3.5 Adaptability to Networks

The network control framework’s support for multiple backends enables pushing
out a rule to the device most appropriate for putting it into effect. Consider, for
example, an environment with several switches, each responsible for a specific
IP subnet. One can add each of them to the network control framework by
instantiating a corresponding backend, configuring each to only accept rules for
the switch’s IP range. When installing a rule, the network control framework will
iterate through the backends until reaching the appropriate switch, which will
signal that it can handle it. As another example, an environment could block
traffic by deploying a combination of a firewall and a router. The router could
drop individual IP addresses efficiently using its hardware lookup tables, but
might not be able to match on other fields like TCP/UDP ports and would hence
reject corresponding requests. The less efficient firewall would then provide a
fall-back accepting all other rules.

Backend priorities allow to fine-tune the selection of backends further. When
instantiating multiple backends with the same priority, the network control
framework will install a rule through all of them. This supports, e.g, the case of
multiple border routers connecting to different upstream providers: blocking IPs
should take effect on all of their links. Shunting on the monitoring path provides
an example for using different priorities. Generally, shunting should happen as
close to the tap as possible. As a fallback, however, in case the closest switch
does not support the necessary drop rule, one can always have the local IDS
host itself filter out the traffic at the NIC level; that way the packets at least do
not reach the IDS’ processing. To support this scenario, one would instantiate a
high priority backend for the switch, and a low priority backend for kernel-level
filtering on the IDS system.

3.6 Unifying State Management

The network control framework installs control rules dynamically as the IDS
identifies corresponding patterns. Typically, such rules remain valid only for

moderate periods of time, from a few minutes to hours. Afterwards, they need
to expire so that network behavior reverts back to normal and resources on the
devices free up. The network control framework thus supports timeouts as an
intrinsic part of its architecture; all operations and rules include them. Internally,
however, handling timeouts requires managing the corresponding state, which
poses a challenge. While some backends can support rule expiration directly
through device mechanisms (e.g., OpenFlow can time out rules), not all have that
capability (e.g., acld). For backends without corresponding support, the network
control framework includes a software implementation as an optional service that
a backend can leverage. If activated, the network control framework tracks the
backend’s active rules with their expiration times, sending it explicit removal
requests at the appropriate time. Even if a device supports rule expiration in
hardware, a backend might still chose to rely on the network control framework’s
implementation instead if the device’s expiration semantics do not align with the
network control framework’s API requirements. In either case, from the user’s
perspective the network control framework reports a notification when a rule
expires, including—if the backend supports it—more detailed information about
traffic it has matched during its lifetime. Generally, hardware switches track such
metrics and the network control framework passes it along.

State management introduces a challenge when either the IDS or a device
restarts, as generally that means the system will loose any rules it has installed.
On the IDS side, one can conceptually solve that rather easily by having the
system retain state persistently across restarts, either through serialization at
termination time or by directly maintaining the information in a on-disk database.
Once the system is back up again, it can then timeout any rules that have expired
during the downtime, sending removal commands to their backends. On the device
side, handling restarts proves more challenging. One approach would be replaying
all the rules from IDS memory. That however could impose significant load on
the device (e.g., imagine reinstalling thousands of IP address blocks). It would
also require actually recognizing that a device has restarted, a task that turns
out difficult to perform for some backends (e.g., OpenFlow switches do generally
not signal restarts explicitly). Therefore, the network control framework accepts
that rebooting a switch means that it will loose all its rules; the framework will
continue operation as if nothing had happened. In practice the impact of this
approach remains low, as due to the dynamic nature of rules in our use cases, their
lifetime tends to remain short anyways. For rules that target individual flows,
chances are the session will have terminated already when the device is back up.
Even for long-lived flows, reverting back to normal operation occasionally usually
proves fine (e.g., when shunting, load will increase back to the full level briefly).
For more general rules, the higher-level analysis can often compensate for the
rare case of a device restart by retriggering the original action. For example,
when dropping with catch-and-release (see §2), the IDS will immediately reblock
the offender on its next connection attempt. Internally, if the network control
framework manages rule expiration it will eventually still send removals for rules
that no longer exist after a device restart, which however the backend can ignore.

4 Implementation

We implement the design of the network control framework on top of the open-
source Bro Network Security Monitor [5,17]. Bro provides an apt platform for
active response as its event-based, Turing-complete scripting language facilitates
complex custom policies taking decisions. Furthermore, Bro allows us to implement
the network control framework fully inside this language as well, whereas other
IDS would typically require integration at a lower level.

4.1 User Interface

The network control framework’s user interface consists of a new script-level
Bro framework that provides script writers with an interface closely following
the design we present in §3, exposing both the high-level operations as well
as the low-level primitives to their custom logic. In the following, we examine
two real-world examples of how a Bro user can leverage the network control
framework to react to network activity the system observes.

First, consider the case of a high-volume supercomputing environment aiming
to shunt all GridFTP [2] data flows, thereby lessening the load on their Bro setup.
In this case, as Bro already includes the capability to identify GridFTP transfers,
one can hook the network control framework’s high-level shunt_flow function,
contained in the NetControl namespace to Bro’s corresponding event by writing
a handler like this:

event GridFTP::data_channel_detected(c: connection) {
NetControl::shunt_flow([$src_h=c$id$orig_h, $src_p=c$id$orig_p,

$dst_h=c$id$resp_h, $resp_p=c$id$resp_p], 1hr);
}

Second, assume we want to block the IP addresses of hosts performing a port
or address scan. For that, we hook into Bro’s alarm reporting (“notices”):

event log_notice(n: Notice::Info) {
if (n$note == Address_Scan || n$note == Port_Scan)

NetControl::drop_address(n$src, 10min);
}

Inserting low-level rules likewise closely follows the design from §3, mapping
the rule attributes from Table 1 to corresponding Bro data types. For example,
the following shows the actual implementation of the shunt_flow operation in
the Bro scripting language. For the most part, the function just converts Bro’s
data structures into the format that the network control framework expects:

function shunt_flow(f: flow_id, t: interval) : string {
local flow = Flow(

$src_h=addr_to_subnet(f$src_h), $src_p=f$src_p,
$dst_h=addr_to_subnet(f$dst_h), $dst_p=f$dst_p
);

local e: Entity = [$ty=FLOW, $flow=flow];
local r: Rule = [$ty=DROP, $target=MONITOR, $entity=e, $expire=t];
return add_rule(r);

}

Since the actual rule operations will execute asynchronously, the network
control framework uses Bro events to signal success or failure, as well for reporting
a rule’s removal along with the corresponding statistics (see §3.6).

4.2 Adding Backends

As discussed in §3.2 and §3.5, the network control framework supports multiple
backends simultaneously with different priorities. In our Bro implementation, one
adds backends at initialization time through corresponding script code:

local backend = NetControl::create_backend_Foo([...]);
NetControl::activate(backend, 10);

The create_plugin_Foo function is part of the backend’s implementation
and receives any arguments that it requires, for example the IP address and port
of a switch to connect to. activate then adds the newly minted instance to the
network control framework, specifying its priority as well (10 in this example).

The network control framework deploys a plugin model for implementing
new backends, making it easy to augment it with support for further devices.
Each backend plugin has to implement three functions for (i) instantiating a
backend of that type, (ii) adding rules, and (iii) removing rules. Instantation
returns an instance of a Bro data type describing the backend with its functions
and features (e.g., if the plugin can handle rule expiration itself). Both the add
and removal functions receive the backend instance along with the rule as their
parameters. The add function returns a boolean indicating if the backend could
execute the rule.

5 Backends

In this section we present the different types of backends that our implementation
of the network control framework currently supports through plugins that we
have implemented: OpenFlow in §5.1, acld in §5.2, Bro’s built-in packet filter in
§5.3, and finally a generic command-line interface in §5.4.

5.1 OpenFlow

OpenFlow [13] is an SDN protocol that allows applications to control the for-
warding plane of a switch (or router) by inserting or removing rules. As switches
with OpenFlow support have become both common and affordable, the protocol
provides an ideal target for the network control framework to support a range

of devices across vendor boundaries. We added OpenFlow support to our im-
plementation in two steps: (i) we created a separate abstraction inside Bro, an
OpenFlow module, that exposes OpenFlow’s primitives to Bro scripts through
a corresponding API; and (ii) we wrote an OpenFlow backend plugin for the
network control framework that uses the OpenFlow module for interfacing to
OpenFlow devices. We chose to separate the two, as OpenFlow support may
prove useful for applications beyond the network control framework as well.

In a OpenFlow deployment, applications typically do not talk to devices
directly, but instead interface to an OpenFlow controller that serves as the
middle-man. The controller is the component that speaks the actual OpenFlow
protocol with the switch (“southbound”), while exposing an external API (e.g., a
REST interface) to clients (“northbound”). Unfortunately, there is no standardized
northbound interface; depending on the choice of a controller, the mechanisms
differ. For our case study, we leveraged the Ryu SDN Framework [19].

Ryu enables creating custom controllers in Python, fully supporting versions
OpenFlow 1.0 to 1.3. We leveraged the Ryu API to write an OpenFlow controller
interfacing Ryu to Bro’s communication protocol, using the Broker messaging
library [6]. On the Bro side, the OpenFlow module maps OpenFlow messages
into corresponding Broker messages, essentially creating our own communication
mechanism between the two systems.3 Figure 2 summarizes the full architecture
when using the network control framework with OpenFlow: Messages pass from
the network control framework’s OpenFlow backend into the OpenFlow module,
which in turn sends them over to the controller via Broker. Results travel the
same way in reverse.

Ryu OpenFlow
Controller

Network
Control

Framework

NC OpenFlow
Backend

OpenFlow
Module

Block, Shunt, …
Decisions

OpenFlow
Protocol

Broker
Protocol

Bro OpenFlow Switch

Fig. 2: OpenFlow Architecture.

As an additional feature, the OpenFlow backend supports callback functions
that can inspect and modify any OpenFlow messages it generates before passing

3 Indeed, our Bro OpenFlow module remains independent of Ryu and could support
other controllers as well if one extended them with a similar receiver component.

them on. This allows to, e.g., use fields that OpenFlow supports yet have no
equivalent inside the framework (e.g., input ports, or VLAN priorities).

OpenFlow’s lack of success messages posed a particular implementation
challenge for the backend. Generally, OpenFlow does not acknowledge rules
that were successfully installed; it only reports error cases. With the network
control framework that proves problematic, as its approach to iterate through all
backends make it important to confirm an action’s execution. One solution would
be to just assume that a rule was succesfully applied after a certain amount of
time has passed with no error message. However, this would require choosing a
conservative timeout and hence significantly delay the success signal back to the
network control framework, contrary to our objective of keeping latencies low.
We instead solved this challenge by using OpenFlow’s barrier messages. When a
switch receives a barrier request, it will answer with a barrier reply, yet only after
it has fully processed all preceeding OpenFlow messages. Hence, once the plugin
receives a barrier reply, it knows that any operations that have not prompted an
explicit error message so far, must have succeeded.

The OpenFlow backend assumes that it can insert rules without conflicting
with other applications talking to the same controller and/or switch. In practice,
one can typically resolve potential conflicts between applications by associating
priorities with the OpenFlow rules, which the backend supports. More generally,
Porras et al [18] present an enhanced controller that mediates conflicts.

5.2 Acld

Acld [1] is a Unix daemon that acts as a middle-man for blocking IP addresses,
address pairs, ports, and more; interfacing to a range of hard- and software
switches and firewalls, including from Cisco, Juniper, and Force10, as well as
BSD ipfw. Acld is, e.g., used by LBNL.

We created an Acld backend for the network control framework that compiles
rules into acld’s command syntax and then sends them over to the daemon for
execution, using again Bro’s communication library Broker to implement that
communication.4 Since the actions that acld supports are more limited than the
rules that the network control framework can express, the backend checks first if
a rule has an acld equivalent, declining it otherwise. Acld does not support rule
expiry itself. Instead, the network control framework keeps track of all its rules
and removes them automatically after their timeout period.

5.3 IDS Packet Filter

We also provide a backend that targets Bro itself. Bro provides an internal
internal packet filter that allows excluding traffic from further processing early
in its processing pipeline. Doing so removes the CPU overhead associated with
that traffic, including in particular stream reassembly and protocol analysis. As
4 Currently, Bro talks to an intermediary Python script, which in turn relays commands
to acld through TCP. We plan to integrate Broker into acld directly in the future.

Papadogiannakis et al. [16] demonstrate, such early filtering can significantly
improve IDS performance. We implemented a network control framework backend
plugin that emits rules for this Bro-internal packet filter, enabling the network
control framework to execute rules for the monitoring path on the IDS system
itself. Usually, this backend will represent a fall-back option: if another backend
can filter the traffic earlier, that would be the better choice; but if that capability
is not available, filtering late remains better than not all.

5.4 Generic Command-line Interface

As a generic backend, we implemented a command-line interface that allows users
to specify shell commands to execute for installing and removing rules, making
it easy to support network components that come with command-line clients.
As an example, we used this to implement network control framework support
for Linux iptables. Our iptables implementation uses Broker again, similar to
the Ryu OpenFlow interface. In this case, we implemented a Broker backend
for the network control framework itself, which passes the low-level network
control framework data structures to a Broker endpoint outside of Bro. We then
implemented a Python script that receives these Broker messages and executes
custom shell commands that the user specifies through a YAML configuration
file. To pass parameters to these commands (e.g., IP addresses), the Python
script replaces a set of predefined macros with the corresponding values from the
network control framework rules. Each shell command executes inside a separate
thread so that even rapid sequences of rules do not lead to delays.5 For Linux
iptables, we use the following command-line for blocking an IP address:

iptables -A INPUT [?address:-s .][?proto:-p .][?conn.orig_h:-s .]
[?conn.orig_p: --sport .][?flow.src_h: -s .][?flow.src_p: --sport .]
[?conn.resp_h:-d .][?conn.resp_p: --dport .][?flow.dst_h: -d .]
[?flow.dst_p: --dport .] -j DROP

Here, the macro syntax tells the Python script to replace each pair of brackets
with either an appropriate command line option if the corresponding network
control framework attribute is defined, or just an empty string if not. The entry
to remove a rule works accordingly.

6 Evaluation

In this section we evaluate functionality and performance of the network control
framework on the basis of the use cases we discuss in §2. We use the network
control framework’s OpenFlow backend for all experiments and measurements.

5 As this could potentially reorder rules, users can optionally disable threading.

6.1 Functionality

We implemented all the use cases we discuss in §2—dynamic firewalling, shunting,
quarantining, and QoS—in a variety of lab setups in different environments. For
these experiments, we connected the network control framework to three different
OpenFlow-capable hardware switches: an IBM G8052 (firmware version 7.11.2.0),
an HP A5500-24G-4SFP (Comware version 5.20.99), and an Pica8 Open vSwitch
P-3930 (PicOs 2.5.2). In each case, we validated correct operation through
manually generating corresponding traffic and confirming that the switches
indeed had installed the anticipated OpenFlow rules. We conclude that our
network control framework generally indeed operates as expected.

During our testing, we however noticed a number of differences between the
OpenFlow implementations of the three switches. Most importantly, while all
the switches offer OpenFlow 1.3, they differ in the feature set they support. For
example, the HP A5500 only supports one output target per rule, making it
impossible to duplicate traffic from one input port to two target ports—generally
a desirable capability for network monitoring setups.6 Both the IBM G8052 and
the Pica8 P-3930 support this operation. Neither the IBM nor the HP switch can
modify IP-level information (e.g., IP addresses or ports), preventing the network
control framework’s corresponding modifications from working with them. The
Pica8 switch provides this functionality. Finally, the size of the switches’ flow
tables differ across the three devices—yet with all of them remaining rather small:
the HP switch offers the largest table, yet still only supports two times 3,072
distinct entries.

6.2 Performance

In terms of performance, we examine two scenarios: the latency of blocking
attacks and malicious content as well as the effectiveness of shunting traffic.

Filtering. As our first scenario, we examine the latency of blocking attacks
and malicious content. When adding block rules, the main operational concern
is the speed with which it takes effect; the delay between the decision and
implementation should be as small as possible.

To test this scenario, we examined one hour of connection logs representing
all external port 80 traffic on the Internet uplinks of the University of California
at Berkeley (UCB). The upstream connectivity consists of two 10GE links with
a daytime average rate of about 9Gb/s total. During that hour, there were
9,392,623 established HTTP connections. To generate a test-load for automatic
blocking, we pretended that every thousandth HTTP connection was carrying
malicious content and thus had to be blocked, turning into an average of 2.6
network control framework operations per second. This level is quite a bit higher
than what even large environments encounter in practice. Consulting with the
6 While the lack of this feature does not affect the network control framework directly,
it could prevent using it in combination with further static monitoring rules.

operations team at LBNL, their system blocked, e.g., an average of 269 and
308 IPs per hour on May 28th and June 1st respectively. In their most active
hour during those days, they blocked 616 IPs, i.e., 0.17 per second. At Indiana
University, 23,875 blocks executed in total during May 2015, corresponding to
0.009 per second. Our testing workload exceeds these rates significantly, hence
putting more strain on the setup than currently found in operational settings.

By extracting from the connection logs the timestamps and originator IP
addresses of all “malicious” connections, we generated execution traces of network
control framework operations matching what a live Bro would have executed
during that hour of traffic. Replaying these traces through Bro triggers the actual
OpenFlow messages with correct timing in a repeatable way. We performed
two measurements with this replay approach: (i) blocking all future traffic
from the offending IP addresses, and (ii) blocking all future traffic from or to
those addresses; the latter requires two OpenFlow rule insertions, doubling their
frequency to an average of 5.2 per second.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

H
P

1
R

ul
e

IB
M

 1
 R

ul
e

IB
M

 2
 R

ul
es

Pi
ca

8
1

R
ul

e

Pi
ca

8
2

R
ul

es

T
im

e
to

 r
ul

e
in

se
rt

io
n

[s
]

Fig. 3: Box plot of rule insertion
latency with uni- and bi-directional
rules for different OpenFlow hardware
switches.

Fig. 4: TCP connection sizes at
UCB (2015-05-07, 15:00-16:00) (Bytes
axis log-scaled).

Figure 3 shows the delays from the moment Bro decided to insert a rule to
the time when the success notification arrived back for most combinations of the
three switches and the two measurements.7 For all combinations shown, the rules
took less than a second to insert, with the mean values being much lower. For

7 We excluded the HP A5500 with bi-directional rules due to problematic behavior
when inserting rules that way: The average latency was >10s, with many rules timing
out and never getting an acknowledgment from the switch.

example, for the IBM G8052, the median latency for bi-directional blocks was
141ms; 42ms for uni-directional. The Pica8 P-3039 showed the most impressive
results with median times of 11ms and 8.5ms, respectively. For comparison,
LBNL’s operations team currently reports latencies around 300ms on average
when performing blocks with their home-built solution, i.e., more than an order
of magnitude more than the combination of the network control framework with
a (good) OpenFlow switch.

These results demonstrate that the network control framework supports high-
speed rule execution even at levels substantially exceeding what operational
environments currently require. Our measurements however also show the impact
of hardware choices on blocking efficiency.

As a second evaluation, we determine how much data can typically still
go through during the “gap time”, meaning the period between when an IDS
determines that a connection should be blocked, and the time when the network
implements that decision. This is the additional latency that passive monitoring
incurs in comparison to an inline IPS, with which blocks take effect instanta-
neously.

For this scenario, we assume a detector that inspects the header of HTTP
requests to determine whether to deem them malicious, issuing blocks at the
end of the header at the latest. We capture a 1-hour packet trace of port 80
connections at the uplink of UCB, taken on 2015-05-01 at 16:00-17:00. Due to the
fact that the traffic volume at UCB is more than a single machine can handle, we
record a representative subset. Specifically, we use 1

28 of all flows, corresponding
to a slice of traffic that the organization’s load-balancer setup sends to one of
their in total 28 backend Bro machines. The resulting trace contains 159,474
HTTP connections.

We replay the trace file using a custom version of Bro, which we instrumented
to output for each HTTP session (i) the packet timestamp of when the header
was completed; (ii) the remaining duration of that connection from that point
onwards; (iii) and the number of bytes transferred during intervals of Ims after
completion of the header, with values for I chosen to correspond to the latencies
we measured above for installing rules into the OpenFlow switches.

First, we measure how many connections terminate before they can be blocked
using an uni-directional block with the different switches, assuming their block-
time is either within the median or the 75% percentile.

Switch Block time Not blocked Med. Transferred Mean Transferred Max Transferred

Pica8 (Med) 8.5ms 4,229 (2.7%) 0 1.6k 68k
Pica8 (75P) 11ms 8,273 (5.1%) 12 2.3k 101k
IBM (Med) 41ms 27,848 (17.4%) 194 9.5k 1.1MB
IBM (75P) 89ms 41,965 (26.3%) 526 27k 4.0MB
HP (Med) 82ms 38,381 (24%) 454 23k 4.5MB
HP (75P) 93ms 43,128 (27%) 537 28k 5.0MB

Table 2: Block times, connections that were not blocked in time, median, mean
and maximum bytes transferred before block was engaged for OpenFlow switches.

Table 2 shows the results of this evaluation. The table shows the median and
75% block-speeds for the different switches. Assuming these values, we evaluate
(i) how many connections terminate before a block can be installed, and (ii) what
the median, mean and maximum amount of bytes are that could be transferred
over the connection before the block was engaged.

These results show that, with the right hardware, the network control frame-
work incurs latencies small enough that it would indeed have been able to stop
most connections before their completion.

Shunting. As a second scenario, we examined the effectiveness of shunting
traffic with the network control framework, using again network traffic from
UCB’s Internet uplink. This time, we examined flow logs of one hour of all TCP
connections during the same peak traffic time as in §6.2. During that hour, the
link saw 17,238,227 TCP connections, with a maximum volume of 7.5GB and a
total volume of 2.1TB.

Figure 4 plots the distribution of connection sizes, with the x-axis showing
the number of connections and the y-axis their volume in log-scale.8 We find the
connection sizes highly heavy-tailed, with a small number of connections making
up the bulk of the data. The mean connection size is 123KB, the median is 2KB.

Looking at the connections in more detail, there are 106 connections transfer-
ring more than 1GB of data, making up 12% of the total traffic; 1999 with more
than 100MB (36%); and 24,106 with more than 10MB (65%). Assuming that we
instructed the network switch to shunt each connection after reaching 1000, 100
or 10MB respectively, we would shunt 53%, 26% or 6.5% of the total TCP data
transferred over the network link.

As this evaluation shows, traffic shunting can be effective even outside of
scientific lab environments with their strong emphasis on bulk transfers. The
university network we examine here exhibits a highly diverse traffic mix, with
typical end-user traffic contributing most of the activity. Still, shunting would
provide significant load reduction. Our implementation of the network control
framework makes this easy to setup and control through just a few lines of Bro
script code.

7 Related Work

There is a substantial body of academic work evaluating the interplay of network
monitoring and software defined networking in different ways. The original
OpenFlow paper [13] already suggests that applications might want to process
individual packets instead of operating at the flow-level, as the OpenFlow API
exposes it. Xing et al. [25] implement a prototype system using Snort to analyze
packets via an OpenFlow controller. A this incurs significant computational cost,
the authors use their system only up to a few thousand packets per second.

8 The connections reporting a size of 0 were not fully established.

Shirali-Shareza et al. [22] examine the problem of controllers not being suitable
to access packet-level information from the network. They propose an OpenFlow
sampling extension, which allows the switch to only send a subset of a flow’s
packets to the controller. However, this approach is not suitable for use with
network monitoring systems that rely on seeing the full packet stream for,
e.g., TCP reassembly. Braga et al. [4] implement a lightweight DDOS flooding
attack detector by regularly querying a network of OpenFlow controllers for
flow information. They do not inspect raw packet contents. Van Adrichem et
al. [24] present a system using OpenFlow to calculate the throughput of each data
flow through the network over time by querying OpenFlow switches in variable
intervals. Their results are within a few percent of direct traffic observation.

Slightly related to our work, Ballard et al. [3] present a language and system
for traffic redirection for security monitoring at line rate. They implement a
language to define how traffic should flow through the network as well as the
system that applies the rules in an OpenFlow-capable network. Snortsam [23]
is a plugin for the Snort IDS, allowing automated blocking of IP addresses on
a number of different hard- and software firewalls and routers. In comparison
to our approach, Snortsam remains more limited, only allowing the blocking of
source/destination IP addresses or single connections. SciPass [10] is an OpenFlow
controller application designed to help scaling network security to 100G networks.
It supports using OpenFlow switches for load-balancing to IDS systems as well as
traffic shunting. For the purpose of our paper, an application like SciPass could
become another backend, just like our OpenFlow interface, and thus complement
our design.

Porras et al. [18] present an enhanced OpenFlow controller mediating conflict-
ing rules that independent applications might insert; an approach that one could
use in conjunction with the network control framework’s OpenFlow backend.
Gonzalez et al. [11] introduce shunting as a hardware primitive in the context
of an inline FPGA device with a direct interface to an IDS. Campbell et al. [7]
evaluate its effectiveness inside 100G scientific environments, using a simulation
driven by Bro connection logs. The network control framework facilitates trans-
parent operational deployment of this powerful capability. Related to shunting,
Maier et al’s Time Machine [12] leverages the heavy-tailed nature of traffic for
optimizing bulk storage.

8 Conclusion

In this paper we present the design and implementation of a network control
framework, a novel architecture enabling passive network monitoring systems to
actively control network components, such as switches and firewalls. Our design
provides a set of high-level operations for common functionality directly, while
also offering access to lower-level primitives to perform custom tasks. As one of
its key features, the framework supports controlling multiple network devices
simultaneously, installing each rule at the component most appropriate to carry
it out.

We assess the feasibility of our design by implementing the framework on top
of the open-source Bro Network Security Monitor, and assess its functionality
and performance through an OpenFlow backend connecting to three hardware
switches in realistic settings. We find that that the network control framework
supports workloads beyond what even large-scale environments currently require.
Going forward, we consider this framework a key abstraction for providing more
dynamic security response capabilities than operators have available today. We
anticipate that, in particular, the largest of today’s network environments—with
links of 100G, and soon beyond—will benefit from the framework’s capabilities
in settings that no inline IPS can support.

9 Acknowledgments

We would like to thank Aashish Sharma, Keith Lehigh, and Paul Wefel for their
feedback and help.

This work was supported by the National Science Foundation under grant
numbers ACI-1348077 and CNS-1228792. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the NSF.

References

1. ACL blocker notes, http://www-nrg.ee.lbl.gov/leres/acl2.html
2. Allcock, W., Bester, J., Bresnahan, J., Chervenak, A., Liming, L., Tuecke, S.:

GridFTP: Protocol Extensions for the Grid (2003), Grid ForumGFD-R-P.020
3. Ballard, J.R., Rae, I., Akella, A.: Extensible and Scalable Network Monitoring

Using OpenSAFE. In: INM/WREN (2010)
4. Braga, Braga, R., Mota, Mota, E., Passito, Passito, A.: Lightweight DDoS Flooding

Attack Detection Using NOX/OpenFlow. In: LCN (2010)
5. Bro Network Monitoring System, https://www.bro.org
6. Broker: Bro’s Messaging Library, https://github.com/bro/broker
7. Campbell, S., Lee, J.: Prototyping a 100g monitoring system. In: PDP (2012)
8. Presentation slides—Anonymized for submission (2014)
9. ESnet: Science DMZ Security - Firewalls vs. Router ACLs, https://fasterdata.

es.net/science-dmz/science-dmz-security/
10. GlobalNOC: SciPass: IDS Load Balancer & Science DMZ, http://globalnoc.iu.

edu/sdn/scipass.html
11. Gonzalez, J., Paxson, V., Weaver, N.: Shunting: A hardware/software architecture

for flexible, high-performance network intrusion prevention. In: ACM Communica-
tions And Computer Security (CCS) Conference (2007), Washington, D.C.

12. Maier, G., Sommer, R., Dreger, H., Feldmann, A., Paxson, V., Schneider, F.:
Enriching Network Security Analysis with Time Travel. In: Proc. ACM SIGCOMM
(2008), http://www.icir.org/robin/papers/sigcomm08-tm.pdf

13. McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford,
J., Shenker, S., Turner, J.: OpenFlow: Enabling Innovation in Campus Networks.
CCR 38(2), 69–74 (Mar 2008)

http://www-nrg.ee.lbl.gov/leres/acl2.html
https://www.bro.org
https://github.com/bro/broker
https://fasterdata.es.net/science-dmz/science-dmz-security/
https://fasterdata.es.net/science-dmz/science-dmz-security/
http://globalnoc.iu.edu/sdn/scipass.html
http://globalnoc.iu.edu/sdn/scipass.html
http://www.icir.org/robin/papers/sigcomm08-tm.pdf

14. Network Control framework and utility code, http://icir.org/johanna/
netcontrol

15. OSCARS: On-Demand Secure Circuits and Advance Reservation System, http:
//www.es.net/engineering-services/oscars/

16. Papadogiannakis, A., Polychronakis, M., Markatos, E.P.: Improving the Accuracy of
Network Intrusion Detection Systems Under Load Using Selective Packet Discarding.
In: EUROSEC (2010)

17. Paxson, V.: Bro: A System for Detecting Network Intruders in Real-Time. Computer
Networks 31(23-24) (1999)

18. Porras, P., Cheung, S., Fong, M., Skinner, K., Yegneswaran, V.: Securing the
Software-Defined Network Control Layer. In: Proceedings of the 2015 Network and
Distributed System Security Symposium (NDSS) (February 2015)

19. Ryu SDN Framework, http://osrg.github.io/ryu/
20. Science DMZ – A Scalable Network Design Model for Optimizing Science Data

Transfers, https://fasterdata.es.net/science-dmz
21. Security and NAT Gateway for the Munich Scientific Network (MWN), https:

//www.lrz.de/services/netzdienste/secomat_en/
22. Shirali-Shahreza, S., Ganjali, Y.: FleXam: Flexible Sampling Extension for Moni-

toring and Security Applications in Openflow. In: HotSDN (2013)
23. Snortsam – A Firewall Blocking Agent for Snort, https://www.snortsam.net
24. Van Adrichem, N., Doerr, C., Kuipers, F.: OpenNetMon: Network monitoring in

OpenFlow Software-Defined Networks. In: NOMS (2014)
25. Xing, T., Huang, D., Xu, L., Chung, C.J., Khatkar, P.: SnortFlow: A OpenFlow-

Based Intrusion Prevention System in Cloud Environment. In: GREE (2013)

http://icir.org/johanna/netcontrol
http://icir.org/johanna/netcontrol
http://www.es.net/engineering-services/oscars/
http://www.es.net/engineering-services/oscars/
http://osrg.github.io/ryu/
https://fasterdata.es.net/science-dmz
https://www.lrz.de/services/netzdienste/secomat_en/
https://www.lrz.de/services/netzdienste/secomat_en/
https://www.snortsam.net

	Providing Dynamic Control to Passive Network Security Monitoring

