
Exploring Tor’s Activity Through
Long-term Passive TLS Traffic Measurement

Johanna Amann1 and Robin Sommer1,2

1 International Computer Science Institute
2 Lawrence Berkeley National Laboratory

Abstract. Tor constitutes one of the pillars of anonymous online com-
munication. It allows its users to communicate while concealing from
observers their location as well as the Internet resources they access. Since
its first release in 2002, Tor has enjoyed an increasing level of popularity
with now commonly more than 2,000,000 simultaneous active clients on
the network. However, even though Tor is widely popular, there is only
little understanding of the large-scale behavior of its network clients. In
this paper, we present a longitudinal study of the Tor network based
on passive analysis of TLS traffic at the Internet uplinks of four large
universities inside and outside of the US. We show how Tor traffic can
be identified by properties of its autogenerated certificates, and we use
this knowledge to analyze characteristics and development of Tor’s traffic
over more than three years.

1 Introduction

Anonymous online communication has become a paramount interest for both
researchers and the Internet community at large. Tor represents the most popular
system to that end, allowing users to communicate with Internet servers while
keeping their identity and location private. While many conceptual aspects of
Tor’s communication have been studied in the past, details about its network-level
properties—such as, especially, the clients’ behavior—remain scarce. Most of
what the community knows about the Tor network comes from public directory
information, which it uses to maintain the network. However, as Tor purposefully
limits this knowledge, there is hardly any information about real-world usage
patterns of Tor clients.

By default, Tor uses the SSL/TLS3 protocol suite to establish encrypted
connections between participating nodes, just as it is commonly used by web
browsers, email clients, etc. In difference to other services using TLS, Tor does
not partake in the global PKI with its trusted Certificate Authority system.
Instead, Tor nodes automatically generate X.509 server certificates, which they
rotate frequently. It turns out, however, that Tor’s current certificate algorithm
leaves them identifiable through pattern matching, enabling passive observers of
the TLS data stream to distinguish Tor connections from other TLS connections.

3 For the remainder of this paper, we will refer to either SSL or TLS as “TLS.”

In this paper, we exploit this characteristic to present a measurement study of
the Tor network using passively collected TLS session information. We (i) identify
Tor sessions; (ii) compare the connections against publicly available information
from Tor directory authorities and; (iii) use metadata from the TLS protocol
layer to infer properties of clients and servers.

Our data set consists of passively collected information of all outgoing TLS
sessions from 4 university networks with, in total, more than 300,000 users,
spanning a period of more than 3 years. Of the 138 billion total sessions in that
set, Tor contributes more than 40 million.

We organize the remainder of this paper as follows: §2 gives a short overview
of the related work. §3 summarizes the Tor protocol and introduces our data
set. §4 discusses the methodology of our measurement study. §5 takes a look at
the properties of outgoing Tor connections in our data set while §6 examines
characteristics of Tor servers. §7 discusses our results and concludes this paper.

2 Related work

There are a number of works that measure different parts of the Tor infras-
tructure. In 2009, McCoy et al. [17] measure the Tor network by joining in as
exit and relay nodes. Their results show that non-interactive protocols consume
a disproportionate amount of bandwidth; that substantial Tor communication
involves clear-text protocols (including transmitting user passwords); and that at
least one exit node examined the content of user payloads. In 2010, Chaabane et
al. [5] perform a slightly different measurement using the same approach.

Loesing measures the relay as well as the client side of the Tor network using
information from the Tor directory authorities [15,14], showing trends from 2006
to 2009. The studies examine the number, bandwidth and country distribution
of relays and clients, and offer an estimate of the number of requests that the
network transfers. Dhungel et al. [7] measure and examine delays introduced by
guard relays using active probing.

While there is further a wealth of work examining anonymity in the Tor
network [11,13,16], proposing updates to the Tor routing algorithms [20], and
measuring specific details like underground marketplaces [6] and child pornogra-
phy trafficking [12], to the best of our knowledge no prior effort has studied the
encrypted traffic between Tor nodes.

3 Background

We begin our discussion by summarizing the background, starting with an
overview of the inner working of Tor with a focus on its communication protocol.
For this we first introduce Tor’s different node types in §3.1, followed by an
overview of their communication in §3.2. Finally, §3.3 introduces the data set
from the ICSI Notary service that we use throughout this paper.

3.1 Tor Node Types

The Tor network consists of different types of nodes. Users run a Tor client that
allows them to access the Tor network. They use a web browser, or other local
software, to access the network via a proxy port that the Tor client opens on

their machine. Clients connect to relays, which forward their information to other
nodes or the Internet at large.

Information about all currently available relays is publically available from
semi-trusted directory authorities, which the Tor client software hardcodes. At
the time of writing, the Tor network offers 9 directory authorities. After retrieving
relay information from a directory authority, clients connect to the network by
connecting to typically three guard relays. The Tor network chooses guard relays
through an automated process that favors stable and reliable nodes.4 Clients keep
connecting to the same set of guard relays for about 4 to 8 weeks—a design that
protects against attackers controlling nodes only for shorter periods while aiming
to correlate timing information [18].5 Next, exit relays forward connections to
the public Internet, with a relay’s administrator deciding if the node may act in
this role.

When a Tor client wants to connect to a host on the Internet, it picks a random
path through the Tor network, starting at one of its guard relays. Neighboring
relays on that path establish connections between each other, forming circuits
that allow clients to reach the destination. The same circuit can be re-used
by a client for several connections to the same target server. The time limit
for a circuit’s reuse depends on the Tor version, and tends to lie between 10
minutes and 2 hours.6 Finally, bridges represent a further class of relays. Their
IP addresses remain private to allow clients from censored countries or networks
to access the Tor network, even if those countries block all Tor relays listed by
the public directory authorities. Bridge IP addresses can, e.g., be obtained via
Tor’s website, which enforces rate limits and uses captchas.

3.2 Tor Node Communication

Tor supports two ways of communication: (i) using the traditional Tor protocol;
and (ii) using pluggable transports. When using the traditional Tor protocol [8],
Tor nodes connect to each other using a TLS connection. Depending on the Tor
protocol version, the way in which a node establishes the TLS connection varies
slightly, but with all modern versions of Tor the server presents an automatically
generated X.509 certificate. The nodes start using the Tor communication protocol
after finishing the setup of the TLS connection.

The second way of connecting to the Tor network uses pluggable transports,7

which enable tunneling Tor through other protocols. Tor supports several such
transport protocols, including obfs2 and obfs38 (protocol obfuscation layers for
TCP protocols), WebSockets,9 and Meek,10 which uses domain fronting to hide
inside innocuous-looking HTTP requests to CDNs.

4 https://blog.torproject.org/blog/lifecycle-of-a-new-relay
5 https://www.torproject.org/docs/faq
6 https://lists.torproject.org/pipermail/tor-dev/2015-March/008548.html
7 https://gitweb.torproject.org/torspec.git/tree/pt-spec.txt
8 https://gitweb.torproject.org/pluggable-transports/obfsproxy.git
9 https://crypto.stanford.edu/flashproxy/

10 https://trac.torproject.org/projects/tor/wiki/doc/meek

https://blog.torproject.org/blog/lifecycle-of-a-new-relay
https://www.torproject.org/docs/faq
https://lists.torproject.org/pipermail/tor-dev/2015-March/008548.html
https://gitweb.torproject.org/torspec.git/tree/pt-spec.txt
https://gitweb.torproject.org/pluggable-transports/obfsproxy.git
https://crypto.stanford.edu/flashproxy/
https://trac.torproject.org/projects/tor/wiki/doc/meek

For our study, we examine only Tor communication over TLS, not any
pluggable transports.

3.3 The ICSI SSL Notary

For our study, we use data from the ICSI SSL Notary [1], which passively
collects TLS session and certificate information from currently seven research
and university networks, covering activity of approximately 390 thousand users
in total. To date, the Notary has recorded more than 138 billion TLS connections,
and more than 3 million unique certificates.11 The first data providers started
contributing data to the Notary in February 2012. Our data providers run the
open-source Bro Network Monitoring System [4,19] on their gateway links. We
provide them with a custom Bro analysis script that collects details from each
outgoing SSL connection. For more details about the setup, we refer to [1]. For
this paper, we use data from four of our seven data providers, choosing universities
with large user populations that have been contributing consistently. Table 1
shows aggregate information about these four providers. This subset covers more
than 300,000 users on two continents for a period of more than 3 years.

Site Certificates Connections Time

Site Users Filtered Certs Tor Certs Total Conns Tor Conns Days

N1 90K 2.6M 3.7M 60G 11M 1,284
N2 50K 1.1M 9.5M 22G 29M 1,022
N3 170K 1.4M 658K 42G 1,1M 853
X1 12K 233K 258K 3.1G 252K 1,003

Total 391K 3.5M 16M 127G 41M —

Table 1: Summary of data set properties from contributing sites. N = North
America, X = rest of world. Total reflects the number of unique items across the
sites. Filt. counts certificates after filtering Tor and Grid Computing certificates.

4 Methodology

In this section we introduce our measurement methodology, including our ap-
proach to identifying Tor certificates. We also present the features that we consider
for each Tor connection.

For studying Tor sessions, we need to distinguish traffic between Tor nodes
from other TLS communication. Examining Tor’s payload, as well as its TLS
source code,12 reveals that the certificates that Tor servers generate exhibit char-
acteristics tha renders them unique. By default, both the issuer and the subject
of the certificates use random Common Names consisting of the components
www., a random 8 to 20 letter base-32 encoded domain name, and a .com or .net

11 Not counting Tor and Grid Computing certificates.
12 https://doxygen.torproject.org/tortls_8c_source.html#l01178

https://doxygen.torproject.org/tortls_8c_source.html#l01178

ending (e.g., www.4dpbq2neblawq7lbq.net, www.iqo3xm6iukfa4qf.com). The
subject and issuer fields are generated independently and thus differ from each
other. Neither subject nor the issuer fields contain further information that is
commonly found in certificates (and mandated by Certificate Authorities), such
as location or company names.

Collected Features

Timestamp TLS extension value lengths Client EC curves
TLS Version Client SNI (RFC6066) DH parameter size
Server certificates Server ticket lifetime (RFC5077) Sent & Received bytes
No. client certificates Hash(Client & Server session ID) Connection Duration
Server IP & port Hash(Client IP, Server IP, Salt) Selected EC curve
Client available ciphers Hash(Client IP, SNI, Salt) TLS Alerts
Selected cipher Client & Server ALPN (RFC7301) Client EC point formats

Table 2: Features collected by our TLS data collection. Shaded features are used
in this study.

These properties allow us to identify Tor connections by parsing the X.509
certificates in our data set and then matching a corresponding regular expression
on their subject and the issuer fields. Through a set of semi-automated cross-
checks, we verified that our data set contains no non-Tor TLS sessions with
certificates matching this heuristic.

One potential pitfall of identifying Tor connections this way stems from
TLS session resumption, which skips most of the TLS handshake, including the
certificate exchange, for consecutive connections to the same TLS server. However,
the Tor specification states that Tor clients and servers must not implement
session resumption (sec. 2.2 of [8]), hence avoiding that challenge.

Table 2 summarizes the features that our notary data set provides.13 Most of
the collected information concerns the TLS handshake, such as the supported
cipher list a client sends, the server selected cipher or different TLS extensions.
In addition to this, the Notary information also contains the IP address and port
of the server. To retain anonymity of users at contributing sites, we hash client
IP addresses with Server IP (and SNI if present), along with a site-specific secret
salt unknown to us. This enables us to identify unique client/server pairs while
keeping client IPs private.

5 Tor Server Connections

As a first step in our exploration of the Tor network, we compare the passively col-
lected data from our measuring points with publically available information from

13 Since we have extended our data collection script over time, information about older
connections does not contain all the listed attributes.

the Tor network. The Tor Project releases a set of statistics containing information
about the relays and bridges in the network on its CollecTor webpage.14

5.1 Tor Consensus Information

For our subsequent analysis, we use CollecTor information about the Tor network
status consensuses. These network status consensuses contain all the relays in
the Tor network as agreed on by the semi-trusted Tor directory authorities (see
§3.1). Among others, the data contains the IP addresses, ports, and Tor versions
of all public relays, as well as the relay flags (like guard relay, exit relay, stable,
fast). This data is available since the end of 2007 with hourly granularity.

e
d

b
c
a

0

5000

10000

20
07

−1
2−

01
20

08
−0

6−
01

20
08

−1
2−

01
20

09
−0

6−
01

20
09

−1
2−

01
20

10
−0

6−
01

20
10

−1
2−

01
20

11
−0

6−
01

20
11

−1
2−

01
20

12
−0

6−
01

20
12

−1
2−

01
20

13
−0

6−
01

20
13

−1
2−

01
20

14
−0

6−
01

20
14

−1
2−

01
20

15
−0

6−
01

20
15

−1
2−

01

IP
s

pe
r

da
y

Flags
a: Total
b: Fast
c: Stable
d: Guard Relay
e: Exit Relay

Fig. 1: Relay types derived from CollecTor data.

Figure 1 shows a plot of the consensus information showing all relays as well
as specific subclasses of relays having the exit, guard, stable and fast status flags
set. A single relay can hold several flags simultaneously to represent, e.g., both a
guard and an exit node.

As the graph shows, the Tor network size has been rising slowly over the recent
years. However, this is not true for all node types. While the average number of
relays per day increased from 3,984 in 2011 to 7,524 in 2014 (i.e., 89% more),
and the number of guard nodes increased from 793 to 1,911 (141%), the number
of exit relays indeed decreased by 37% from 1,965 to 1,243 per day. We assume
this corresponds to an increasing awareness that Tor exit node maintainers may
find themselves facing legal challenges.15 However, this also means that in 2014,
each exit node routed a larger fraction of the traffic than in 2011—which makes
operating an exit node more interesting to malicious participants aiming to
examine outgoing traffic.

14 https://collector.torproject.org/
15 https://www.torproject.org/eff/tor-legal-faq.html.en

https://collector.torproject.org/
https://www.torproject.org/eff/tor-legal-faq.html.en

The stable flag signals that a node has remained reliable over time; it consti-
tutes a requirement for becoming a guard node. Tor considers a relay stable when
either its mean time between failures (MTBF) is at least the median of all known
active relays or its weighted MTBF (definition in [22]) is more than 7 days [22].
The number of stable Tor relays has increased by 183% from 2011 to 2014, from
an average of 1,466 relays to 4,171. This might correlate with permanent Internet
connections becoming more available to end-users.

5.2 Connection Classification

Generally, in any large end-user network, we would expect most Tor nodes to
act as clients. Hence, most outgoing connections should connect to guard relays.
To check this, we match all outgoing connections to the Tor network consensus
information of CollecTor.

c
b
a

0

2000

4000

6000

20
12

−0
4−

01
20

12
−0

7−
01

20
12

−1
0−

01
20

13
−0

1−
01

20
13

−0
4−

01
20

13
−0

7−
01

20
13

−1
0−

01
20

14
−0

1−
01

20
14

−0
4−

01
20

14
−0

7−
01

20
14

−1
0−

01
20

15
−0

1−
01

20
15

−0
4−

01
20

15
−0

7−
01

20
15

−1
0−

01

IP
s

pe
r

da
y

Server Types (top to bottom)
a: All Servers
b: Guard Relays
c: Exit Relays

Fig. 2: Connections to differing node types at N1.

Figure 2 shows the total number of external relay IP addresses seen each day
at site N1, also indicating which of them act as guard and exit relays. Over the
time period of the measurement, 50% of all connections (5,318,445 of 10,612,263)
terminated at guard nodes. Considering that the average number of guard nodes
in the Tor network is just 20% (all-time; 25% in 2014), this indicates that there
is a sizeable fraction of clients running at this institution.

The graph also contains several distinct peaks during which the ratio of
of guard nodes per day is much lower. During these times, most connections
terminate at “normal” relay nodes on the Tor network that are neither exit nor
guard relays. We suspect that the peak between August and November of 2013
can be attributed to the Mevade Botnet, which caused a massive global rise in
the number of active Tor users, going from approximately 1 million daily users
to nearly 6 million [10]. We are not aware of specific reasons for the other spikes,
the most notable spanning October to December 2014. However, as we do not see

similar artifacts at our other sites, and taking into account that most connections
do not target guard servers, we speculate that a local user was running a Tor
relay during these times, offering the university’s excellent bandwidth to the
Tor network. To verify that hypothesis, we analyze the TLS fingerprints of the
connections from this site to the Tor network. In particular, we focus on two bits
of information that each client sends in its TLS client hello message: the lists of
cipher suites and TLS extensions that it supports, which both depend on the
interplay between the versions of Tor and OpenSSL. This analysis reveals that
the spikes in December 2014, the Mevade spike between August and November
2013, the spike in February 2014, and the spike in March 2013 all map to specific
TLS fingerprints, indicating a single software responsible for each.

Looking at our other sites, site N3 and site X1 exhibit a generally low level
of Tor connections (1,286 and 418 connections per day on average, respectively)
in comparison to site N1 (9,366/day). Connections there mostly terminate at
guard nodes in the Tor network (80% and 75% of connections respectively),
suggesting client activity. Site N2 has the largest number of connections into the
Tor network among all of our sites (21,675/day on average), with connections
steadily increasing from 2,818/day in February 2013 to 88,666 in February 2015.
The distribution of connections changes starting in mid-2014, going from 72%
terminating at guard nodes in January 2014 to just 38% in January 2015. We
again assume this to be a case of having well-established Tor servers inside the
network of this university.

5.3 Connection durations

Site 1st Qu. Median Mean 3rd Qu. Max

N1 3.0 3.0 9.6 10.1 9,839
N2 3.0 6.3 19.5 16.8 22,280
N3 1.5 3.0 7.3 3.2 16,370
X1 3.0 3.0 8.3 3.3 10,120

Table 3: Summary of guard relay connection durations for each site in minutes.
Qu. = Quantile.

Another piece of information available to a passive observer of the Tor network
is the duration of connections going to Tor relays. Table 3 gives an overview of
the connection durations to guard nodes that we encountered at our 4 sites. At
each of our sites, we see a few very long connections, with at least one connection
having a duration of more than 6.8 days in each case. However, the distribution
of durations is highly skewed towards very short connections. Depending on the
site, the median connection duration across the data set is between 3.0 and 6.3
minutes, with the mean being a bit higher at 7.3 to 19.5 minutes. Figure 3 shows
a comparison of the daily mean and medium durations at site N1, illustrating that

the mean remains stable over time while the median fluctuates more, potentially
due to local user activity.

We find a partial explanation for this behavior by examining how Tor relays
establish connections between each other. When two Tor relays set up a circuit,
they keep the TLS session alive for up to three minutes to potentially reuse for
followup requests; only if there are no further circuits going over this connection
during that time, they will tear it down [2]. However, from the literature we could
not identify an explanation for the even shorter duration that we see frequently
as well. Their high number (17%, 6.9%, 34% and 13% of all connections for
N1, N2, N3, and X1, respectively) points towards a systematic reason. Possible
explanations include Tor clients using short-lived connections for internal house-
keeping, independent of user activity (e.g. to update their relay lists); and
implementation artifacts.

b

a

3

10

20

50

100

20
12

−1
2−

01
20

13
−0

3−
01

20
13

−0
6−

01
20

13
−0

9−
01

20
13

−1
2−

01
20

14
−0

3−
01

20
14

−0
6−

01
20

14
−0

9−
01

20
14

−1
2−

01
20

15
−0

3−
01

20
15

−0
6−

01
20

15
−0

9−
01

[M
ea

n/
M

ed
ia

n]
 c

on
n

du
ra

tio
ns

/d
ay

Connection durations
a: Mean
b: Median

Fig. 3: Median and mean guard relay connection durations at site N1 in minutes.
y-axis log-scale.

6 Server Characteristics

In this section, we take a look at the server side of the Tor, beginning with
an examination of the server version changes in §6.1, followed by a look at the
server-chosen cipher suites in §6.2.

6.1 Tor Server Versions

The Tor network consensus introduced in §5.1 provides the software versions
for all running Tor relays. We extracted these and show their distribution over
time in Figure 4. While generally the uptake of new server versions is rather
fast, we see a long tail of servers that remain on older releases for a significant
period of time. From a deployment perspective, this makes sense; unlike for
the Tor client software which, when used in form of the Tor Browser bundle,

0.1.2.17
0.1.2.18

0.1.2.19

0.2.0.30

0.2.0.31

0.2.0.32

0.2.0.33

0.2.0.34

0.2.0.35

0.2.1.19

0.2.1.20

0.2.1.21

0.2.1.22

0.2.1.23
0.2.1.24

0.2.1.25

0.2.1.26

0.2.1.27
0.2.1.28

0.2.1.29 0.2.1.30

0.2.2.32

0.2.2.33

0.2.2.34

0.2.2.35

0.2.2.36

0.2.2.37

0.2.2.38

0.2.2.39

0.2.3.19−rc0.2.3.20−rc0.2.3.22−rc
0.2.3.24−rc

0.2.3.25

0.2.4.17−rc

0.2.4.19

0.2.4.20

0.2.4.210.2.4.22

0.2.4.23

0.2.4.24

0.2.4.27

0.2.5.10

0.2.5.11

0.2.5.12

0.2.5.8−rc

0.2.6.10

0.2.6.9

0.0

0.2

0.4

0.6

0.8

20
08

−0
2−

01
20

08
−0

8−
01

20
09

−0
2−

01
20

09
−0

8−
01

20
10

−0
2−

01
20

10
−0

8−
01

20
11

−0
2−

01
20

11
−0

8−
01

20
12

−0
2−

01
20

12
−0

8−
01

20
13

−0
2−

01
20

13
−0

8−
01

20
14

−0
2−

01
20

14
−0

8−
01

20
15

−0
2−

01
20

15
−0

8−
01

[%
] s

er
ve

rs
 w

ith
 v

er
si

on
 p

er
 m

on
th

Fig. 4: Tor versions used by relay nodes, according to CollecTor network status
consensus information. Does not include versions with peak usage < 10%.

comes with an autoupdate functionality, administrators install Tor relay servers
either manually or via the package management system of their operating system.
Considering this, we deem the update rate surprisingly good, suggesting a high
level of motivation among server operators to update the software diligently,
likely due to their interest to protect Tor users’ privacy as much as possible.
Furthermore, it certainly helps that Tor’s developers tend to be well-connected
within the OS community, with some of them being, e.g., also Debian developers.

Inspecting the data in more detail reveals that a large number of Tor versions
never see widespread adoption. In total, we observe 325 different versions in
the consensus data set. Of these, only 48 versions ever reach a usage level of
more than 10% of all relays. Of the 277 versions with a maximum usage level
below 10%, 257 are alpha or release candidate versions. As Figure 4 shows, there
are only 6 versions of Tor that exhibit a combined use of more than 60% of all
relay nodes. There is a repeating pattern of specific versions like, e.g,. 0.2.2.36 to
0.2.2.38, do not see any widespread use, while their parent version keeps enjoying
popularity (which however then ends rapidly eventually). This kind of behavior
suggests that OS distributions may not include certain versions of the software,
preventing it from seeing widespread adoption.

6.2 Server Cipher Suites

With this knowledge, we take a deeper look at the Notary data set. Another
piece of information present in our data is the cipher suite that a server chooses
in its TLS server hello message, which represents the encryption algorithm used
for the remainder of the TLS session.

Figure 5 shows the main cipher suites that the outgoing connections at site N1
selected. It suggests a number of encouraging conclusions. Tor, in general, chooses
secure cipher suites that use ephemeral keys and are thus perfectly forward

e
d
c

b

a

0.00

0.25

0.50

0.75

1.00

20
12

−1
1−

01
20

13
−0

2−
01

20
13

−0
5−

01
20

13
−0

8−
01

20
13

−1
1−

01
20

14
−0

2−
01

20
14

−0
5−

01
20

14
−0

8−
01

20
14

−1
1−

01
20

15
−0

2−
01

20
15

−0
5−

01
20

15
−0

8−
01

[%
] c

on
ne

ct
io

ns
 w

ith
 c

ip
he

r/
m

on
th

Cipher suites
a: DHE_AES_256_CBC_SHA
b: ECDHE_AES_256_CBC_SHA
c: ECDHE_AES_128_GCM_SHA256
d: ECDHE_AES_128_CBC_SHA
e: DHE_AES_128_CBC_SHA

Fig. 5: TLS connection ciphers at site N1.

secure. This indeed matches one of the original design goals of Tor, which also
contributed to its choice to avoid session resumptions (see §4).

The plot also shows that Tor connections started to switch from Diffie-Hellman
(DH) key exchange to Elliptic Curve Diffie-Hellman (ECDH) in December 2012.
The process has proceeded only slowly and is still ongoing: more than 50% of
the connections still use DH. Examining the DH key exchange in more detail
reveals that its parameter size is always 1024 bits; Tor apparently never uses
larger parameters. We assume that the reason for the continuing use of DH key
exchanges lies in the OpenSSL versions that are installed on Tor servers. Some
operating system providers have excluded ECDH support from their OpenSSL
libraries for a long time due to fears of patent claims [9], making DH key exchanges
the only viable alternative for perfect forward secrecy. While 1024 bit keys are
not yet considered insecure, their use is discouraged. Since a sizeable percentage
of connections is still using DH key exchanges, Tor should consider switching the
parameter size to 2048 bits.

For ECDH connections, we at first see an uptake of connections using AES-128
with SHA1 in cipher block chaining (CBC) mode, which in 2014 rapidly switches
to either AES-256 with SHA1 and CBC, or AES-128 using Galois/Counter-
Mode (GCM) and SHA-256. The reason for this is probably that OpenSSL
only supports GCM starting with OpenSSL 1.0.1. Version 1.0.0, which is still
maintained, cannot use this cipher mode. Since GCM is the preferential choice
of cipher suites, we assume that Tor falls back to CBC if not available. EC
connections almost exclusively use the secp256r1 curve, which also is the most
commonly supported curve on web servers [3].

Taking a look at all other cipher suites that we observe, only a few thousand
connections (<0.1%) use non perfectly forward ciphers. We assume these are the
result of non-Tor software trying to contact Tor servers.

7 Discussion and Conclusion

This paper presents a longitudinal measurement study of Tor’s network-level
activity, derived from passively collected TLS connection information at four
large-scale network sites over the course of more than 3 years. Generally, our
study confirms that Tor pays attention to choosing TLS security parameters
carefully, including ensuring forward secrecy, avoiding broken ciphers and picking
modern cryptographic primitives. However, we also notice that a significant
number of servers keep using a Diffie-Hellman key exchange with a parameter
size of 1024, which could become a security risk soon. Our analysis also shows
that while server operators tend to update their software quickly, a significant
long-tail of systems keep using outdated versions for significant periods of time.

For the reader not intricately familiar with Tor, one surprising result might
be the ease with which one can identify Tor connections on the network by
their characteristic use of X.509 certificates. For environments aiming to block
Tor traffic—common not only from a censorship perspective, but also inside
many enterprise environments—this suggests an alternative route to the standard
approach of tracking Tor relays through blacklists, which need frequent updates.
Interestingly, Tor switched to the current certificate scheme precisely to avoid
such detection. As [21] discusses, earlier versions used “funny-looking certs [that]
made Tor pretty easy to profile”. With Tor 0.2.0.20, they switched to the current
scheme to better blend in. However, as our study shows, detection remains an
arms race, and an attacker with the ability to match regular expressions against
certificates on the wire can easily identify Tor traffic today. Going forward, Tor
could raise the bar further by avoiding the tell-tale signs that our detector picks
up on. However, longer term, their strategy to rely on pluggable transports
promises a better chance to render their users invisible again.

Acknowledgments

We thank Phillip Winter and David Fifield for their feedback during the writing
of this paper. This work was supported by the National Science Foundation
under grant numbers CNS-1528156 and ACI-1348077. Any opinions, findings,
and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the NSF.

References

1. Amann, J., Vallentin, M., Hall, S., Sommer, R.: Extracting Certificates from Live
Traffic: A Near Real-Time SSL Notary Service. Tech. Rep. TR-12-014, International
Computer Science Institute (Nov 2012)

2. Biryukov, A., Pustogarov, I., Weinmann, R.P.: TorScan: Tracing Long-Lived Con-
nections and Differential Scanning Attacks. In: Proc. ESORICS (2012)

3. Bos, J.W., Halderman, J.A., Heninger, N., Moore, J., Naehrig, M., Wustrow, E.:
Elliptic Curve Cryptography in Practice. In: Proc. FC (2014)

4. Bro Network Monitoring System, https://www.bro.org
5. Chaabane, A., Manils, P., Kaafar, M.A.: Digging into Anonymous Traffic: A Deep

Analysis of the Tor Anonymizing Network. In: Proc. NSS (2010)
6. Christin, N.: Traveling the Silk Road: A Measurement Analysis of a Large Anony-

mous Online Marketplace. In: Proc. WWW (2013)

https://www.bro.org

7. Dhungel, P., Steiner, M., Rimac, I., Hilt, V., Ross, K.: Waiting for Anonymity:
Understanding Delays in the Tor Overlay. In: Proc. P2P (2010)

8. Dingledine, R., Mathewson, N.: Tor Protocol Specification, https://gitweb.

torproject.org/torspec.git/tree/tor-spec.txt

9. Enable Elliptical Curve Diffie-Hellman (ECDHE) in Linux (Jul 2013), https://www.
internetstaff.com/enable-elliptical-curve-diffie-hellman-ecdhe-linux/

10. Hopper, N.: Challenges in Protecting Tor Hidden Services from Botnet Abuse. In:
Proc. FC (2014)

11. Hopper, N., Vasserman, E.Y., Chan-TIN, E.: How Much Anonymity Does Network
Latency Leak? ACM Trans. Inf. Syst. Secur. 13(2), 13:1–13:28 (Mar 2010)

12. Hurley, R., Prusty, S., Soroush, H., Walls, R.J., Albrecht, J., Cecchet, E., Levine,
B.N., Liberatore, M., Lynn, B., Wolak, J.: Measurement and Analysis of Child
Pornography Trafficking on P2P Networks. In: Proc. WWW (2013)

13. Le Blond, S., Manils, P., Chaabane, A., Kaafar, M.A., Castelluccia, C., Legout, A.,
Dabbous, W.: One Bad Apple Spoils the Bunch: Exploiting P2P Applications to
Trace and Profile Tor Users. In: Proc. LEET (2011)

14. Loesing, K.: Measuring the Tor Network, Evaluation of Client Requests to the
Directories to Determine total Numbers and Countries of Users. Tech. Rep. 2009-
06-002, The Tor Project (Jun 2009)

15. Loesing, K.: Measuring the Tor Network from Public Directory Information. Tech.
Rep. 2009-08-002, The Tor Project (Aug 2009)

16. Manils, P., Abdelberi, C., Blond, S.L., Kâafar, M.A., Castelluccia, C., Legout, A.,
Dabbous, W.: Compromising Tor Anonymity Exploiting P2P Information Leakage.
CoRR abs/1004.1461 (2010), http://arxiv.org/abs/1004.1461

17. Mccoy, D., Bauer, K., Grunwald, D., Kohno, T., Sicker, D.: Shining Light in Dark
Places: Understanding the Tor Network. In: Proc. PETS (2008)

18. Overlier, L., Syverson, P.: Locating Hidden Servers. In: Proc. IEEE S&P (2006)
19. Paxson, V.: Bro: A System for Detecting Network Intruders in Real-Time. Computer

Networks 31(23-24) (1999)
20. Tang, C., Goldberg, I.: An Improved Algorithm for Tor Circuit Scheduling. In:

Proc. CCS (2010)
21. Tor Wiki – TLS History, https://trac.torproject.org/projects/tor/wiki/org/

projects/Tor/TLSHistory

22. Tor Directory Protocol, Version 3, https://gitweb.torproject.org/torspec.git/
tree/dir-spec.txt

https://gitweb.torproject.org/torspec.git/tree/tor-spec.txt
https://gitweb.torproject.org/torspec.git/tree/tor-spec.txt
https://www.internetstaff.com/enable-elliptical-curve-diffie-hellman-ecdhe-linux/
https://www.internetstaff.com/enable-elliptical-curve-diffie-hellman-ecdhe-linux/
http://arxiv.org/abs/1004.1461
https://trac.torproject.org/projects/tor/wiki/org/projects/Tor/TLSHistory
https://trac.torproject.org/projects/tor/wiki/org/projects/Tor/TLSHistory
https://gitweb.torproject.org/torspec.git/tree/dir-spec.txt
https://gitweb.torproject.org/torspec.git/tree/dir-spec.txt

	Exploring Tor's Activity Through Long-term Passive TLS Traffic Measurement

