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Abstract. Although mobile hand-held devices (MHDs) are ubiquitous today, lit-
tle is know about how they are used—especially at home. In this paper, we cast a
first look on mobile hand-held device usage from a network perspective. We base
our study on anonymized packet level data representing morethan 20,000 resi-
dential DSL customers. Our characterization of the traffic shows that MHDs are
active on up to 3 % of the monitored DSL lines. Mobile devices from Apple (i. e.,
iPhones and iPods) are, by a huge margin, the most commonly used MHDs and
account for most of the traffic. We find that MHD traffic is dominated by multi-
media content and downloads of mobile applications.
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1 Introduction

Today advanced mobile hand-held devices (MHDs, e. g., iPhones and BlackBerrys) are
very popular. MHDs have evolved rapidly over the years—frompure offline devices, to
cell phones with GSM data connectivity, to 3G devices, and universal devices with both
cellular as well as WiFi capabilities. Their increased graphics and processing power
makes these devices all-in-one PDAs and media centers. Today’s MHDs can be used
to surf the Web, check email, access weather forecast and stock quotes, and navigate
using GPS based maps—to just name some of the prominent features. This increase in
flexibility has caused an increase in network traffic. Indeed, cellular IP traffic volume is
growing rapidly and significantly faster than classic broadband volume [15].

We, in this paper, cast a first look at Internet traffic caused by mobile hand-held
devices. We use anonymized residential DSL broadband traces, spanning a period of
11 month, to study MHD behavior and their impact on network usage. We are thus able
to observe the behavior of MHDs when they are connected via WiFi at home and com-
pare their traffic patterns to the overall residential traffic characteristics. Some devices
(most notably iPod touch and iPhone) require WiFi connectivity rather than cellular
connectivity for some services. Other services are more likely to be used via cellular
connectivity due to user mobility, e. g., looking up directions on Google Maps, while
walking around town or driving. Although, we in this paper only focus on residential
MHD usage and not MHD usage in cellular networks, our analysis gives first insights
into what kind of services users are interested in when they are at home and have access
to all services. This information is crucial for 3G cellularproviders to anticipate usage
patterns and future traffic growths.
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Table 1.Overview of anonymized packet traces.

MHD HTTP Traffic
Name Start date Duration Size # MHDs Volume % of HTTP
SEP08 Thu 18 Sep’08 4am 24 h >4 TB >200 >2 GB 0.1 %
APR09 Wed 01 Apr’09 2am 24 h >4 TB >400 >9 GB 0.4 %
AUG09a Fri 21 Aug’09 2am 24 h >6 TB >500 >15 GB 0.6 %
AUG09b Sat 22 Aug’09 2am 24 h >5 TB >500 >15 GB 0.7 %

The remainder of this paper is structured as follows. In Sec.2 we present our data
sets and methodology, Sec. 3 presents our results. In Sec. 4 we discuss related work
before we conclude our paper in Sec. 5.

2 Data and Methodology

In this section we describe the anonymized data sets of residential DSL connections
and our methodology for analyzing them.

2.1 Data Sets

We base our study on multiple sets of anonymized packet-level observations of resi-
dential DSL connections collected at aggregation points within a large European ISP.
The monitor, using Endace monitoring cards, operates at thebroadband access router
connecting customers to the ISP’s backbone. Our vantage point allows us to observe
more than 20,000 DSL lines. The anonymized packet-level traces are annotated with
the anonymized DSL line card port id. This enables us to uniquely distinguish DSL
lines since IP addresses are subject to churn and as such cannot be used to identify
DSL lines [7]. While we typically do not experience any packet loss, there are sev-
eral multi-second periods (less than 5 minutes overall per trace) with no packets due to
OS/file-system interactions.

We use several 24 h traces collected over a period of 11 monthswhich gives us the
the opportunity to track changes in mobile device usage overtime. Table 1 summarizes
characteristics of the traces, including their start, duration, size, and number of observed
MHDs. We note that while the number of observed DSL lines remains about the same
in each trace, the number of observed MHDs has increased significantly.

The data anonymization, classification, as well as application protocol specific hea-
der extraction is performed immediately on the secured measurement infrastructure us-
ing the Bro NIDS with dynamic protocol detection [3].

2.2 Identifying MHDs

To understand how MHDs are utilized we need to identify not only their presence in
our traces but also their contributions. This is non-trivial as MHD users commonly do
not just operate the MHD over their DSL-line but also/mainlycomputers or set-top
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boxes. Note, that all devices active via one DSL-line usually share a single IP address.
Therefore, we rely on network signatures which we gather by observing and recording
MHD behavior in a controlled environment.

Among the currently popular MHD devices are Symbian based phones, BlackBer-
rys, iPhones and iPods, Windows Mobile based phones, and Google Android phones [12].
We collected manual traces using tcpdump for all device types except BlackBerrys1.
With each device we performed the following set of actions using a wireless access-
point for data collection: connecting to the access-point,accessing several Web sites,
watching videos on YouTube, using other mobile applications like Weather and Stocks,
checking and sending emails, using Facebook, and updating/installing mobile applica-
tions on the MHD.

Analyzing these manual traces reveals that HTTP dominates the protocol mix and
that most mobile applications, including Weather, Stock quotes, AppStore, and YouTube,
use HTTP. From our manual traces we extract a list of HTTP user-agent strings for each
device and OS combination.2 We further augment this list by well-known strings from
other mobile devices, e.g., BlackBerrys. This captures thestrings of the standard ap-
plications. However, it is not possible to compile a list of all user-agent strings that
MHD application writers may use. However, since most rely onstandard libraries, we
can add patterns for these. For example, most applications for Apple devices use the
Apple CFNetwork library for communication and CFNetwork usually adds its name
and version number to the end of user-agent strings. While Mac OS X also uses CFNet-
work, the version numbers used by the iPhone and Mac OS X are disjoint and we can
distinguish them. Based on this collection of user-agent strings we create patterns for
(i) identifying DSL lines that “host” MHDs and(ii) identifying and classifying MHD
usage of HTTP.

2.3 Application Protocol Mix

Finding signatures for identifying non-HTTP traffic causedby MHDs is more difficult
since most other application protocols, e. g., POP, do not add device related information
to their user-agent strings. Furthermore, they may use encryption.

One obvious approach for overcoming this limitation is to assume that MHDs and
regular computers are used consecutively, i. e., not used atthe same time at the same
DSL line. Based upon this assumption one can classify all traffic after a HTTP request
from a MHD on a DSL line as MHD traffic (relying on a timeout). However, we show
in Sec. 3.1 that the underlying assumption is incorrect. A majority of the lines shows
contemporaneous activity from MHDs and regular computers.

Therefore, we take advantage of another characteristic of network devices—their IP
TTLs. The default IP TTLs of popular MHDs differ from those ofthe most commonly
used home OSs. The default TTL of iPhones/iPods and Macs is 64, Symbian uses 69,
while Windows uses 128. This enables us to separate MHD usagefrom regular PC

1 Manual trace collection was performed with Google’s G1 (Android 1.5), Apple’s iPod touch
(iPhone OS 2 & iPhone OS 3), HP’s iPaq (Windows Mobile), HTC Touch 3G (Windows
Mobile), Nokia 810 (Maemo Linux), and Nokia E61 (Symbian). Thanks to all device owners.

2 We note that these MHD user-agent strings differ from user-agent strings used by PCs/Macs.
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Fig. 1.Popularity of MHD device types

usage for some combinations of OSs. While we cannot distinguish iPhones/iPods from
Macs or Windows Mobile from Windows we can use IP TTLs to separate the other
combinations. Our observations show that the majority of home OSs is Windows while
the majority of MHDs are iPods or iPhones. In order separate those, we first select all
DSL lines for whichevery HTTP request with a TTL3 of 64 or 69 is originated by a
MHD (as identified via the user-agent). The assumption is that all traffic on these lines
with TTL 64/69 is then caused by a MHD. Thus, we can then use Bro’s DPD [3] on
this traffic to get a first impression of the application protocol mix of MHDs. Since this
approach excludes lines with certain combinations of MHDs and regular computers we
are left with 54–59 % of the lines with MHDs. In addition, if the activity of the regular
computer does not include HTTP we might misclassify its traffic. We note that we use
this heuristic only for analyzing the application protocolmix, we use user-agent strings
for all other analyses.

3 Results

After reporting on the pervasiveness of MHDs we focus on their protocol mix. Then
we characterize MHDs’ HTTP traffic, analyze mobile application usage, and present
results on iTunes and AppStore usage.

3.1 MHD Pervasiveness

On a significant number of the DSL lines we observe traffic fromMHDs (see Table 1).
Indeed, in the most recent trace,AUG09, 3 % of active lines have MHD activity. More-
over, the contribution of MHDs to the observed HTTP traffic isalso substantial (up to
0.7 % of HTTP bytes). This indicates that some MHD users may find it more convenient
to use their mobile devices at home even if they have a regularcomputer as well. Note,
HTTP’s share of overall traffic volume is 50–60% [4, 7].

There is a strong temporal trend underlined by the rapid growth in the number of
lines with MHDs’ activity and in the MHDs’ HTTP traffic volume. The number of lines

3 We take NAT devices and our hop distance to the end system intoaccount.
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Fig. 2.Number of lines with MHD activity (top) vs. Number of lines with HTTP activity (bottom)

with MHDs almost doubled betweenSEP08 and AUG09. The HTTP traffic volume
from MHD grew sixfold while the overall traffic volume increased only slightly and the
overall HTTP volume increased by 22 % at our vantage point.

Fig. 1 shows the distribution of active devices types for alltraces. We observe that
Apple devices (iPhone and iPod touch) clearly dominate, both in terms of number of
lines and traffic volume (not shown). They account for 86–97 %of MHDs’ HTTP traffic
and 71–87% of the devices. This is in contrast to the market shares of the devices [12].
Possible explanations are that Apple users(i) find their device very convenient even for
home use and/or(ii) are looking for a multimedia device that “also works as a phone”.
Indeed, the iPod Touch is an iPhone without phone capability. We note that starting
from APR09 the number of lines with iPods outnumber the number of lines with all
non-Apple MHDs combined.

We already pointed out that we have a substantial number of DSL lines “hosting”
MHDs. Now we want to illustrate how the use of MHDs is distributed over the course
of a day. To determine how the use of MHDs is distributed across time we plot the
relative number of lines with active MHDs per hour (top) and the percentage of lines
with HTTP traffic per hour forAPR09 andAUG09b in Fig. 2. We see that MHDs are
used throughout the day. While we see a similar behavior whenlooking at overall HTTP
traffic, we see that MHD usage has a stronger pick-up in the morning (AUG09b even
shows a peak). Overall HTTP traffic on the other hand slowly ramps up during the day.
Again the convenience of using the mobile device may be a possible explanation. Users
can use them to check their emails or the weather when “starting their day”. The low
byte contribution of mobile devices in the morning hours supports this claim (figure not
shown).

Next, we examine if MHDs and regular computers are used consecutively or whether
they are used contemporaneously. To asses this, we compute for each DSL line and for
any two subsequent HTTP requests their inter-request-times (IRTs) and label them as
(i) both from MHDs,(ii) both from non-MHDs, or(iii) from MHD and non-MHD.
Using this information and timeouts of one second, one minute, and five minutes we
compute the number of DSL lines with mixed activity (MHD and non-MHD). We find
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Fig. 3. HTTP content type categories by volume. Comparing MHD traffic all HTTP traffic.

that 33–39% of MHD lines exhibit mixed MHD/non-MHD activitywith IRTs of less
than one second. For IRTs of less than one minute (five minutes) up to 62 % (72 %) of
the lines have mixed activity.

3.2 Application Protocol Mix

While our approach for analyzing the application protocol mix of MHDs is limited
(see Sec. 2.3), it still gives us a first impression of MHDs’ traffic composition. We find
that HTTP clearly dominates across all of our traces. HTTP contributes 80–97% of all
MHD bytes. Email related protocols account for more than 9 % of the bytes inSEP08,
2.3–2.5% inAPR09 andAUG09a. However, it drops to 0.2 % inAUG09b most likely
due to a different usage patterns on weekends. In general, noother protocol has a traffic
share of more than 1.5 % with the exception of 13 % unclassifiedtraffic in APR09, and
15 % RTMP streaming inAUG09a, caused by only a handful of MHDs.

3.3 MHD Web Traffic

Given that HTTP traffic accounts for the vast majority of MHD traffic we now examine
it more closely to characterize its usage and how it differs from overall HTTP usage.
We use anonymized HTTP headers and identify HTTP requests from MHDs using user-
agents strings as discussed in Sec. 2.2.

To identify the content-type of each transfered HTTP objectwe join information
from theContent-Type HTTP header field and an analysis of the initial part of the HTTP
body usinglibmagic, see [7]. We then group these into a handful of categories. Weclas-
sify downloads of mobile applications as apps, video and audio content as multimedia,
and images as web-browsing since the latter are usually an integral part of Web pages.

Fig. 3 shows the HTTP content type categories for MHDs and compares them with
all HTTP traffic. We find that multimedia content is the most voluminous MHD content-
type across all traces followed by application downloads. Interestingly,XML objects are
also common. They account for 2–5 % of the transfered HTTP bytes.XML is used by
many applications for status and data updates, e.g., weather forecasts, stock quotes, and
sport results. Surprisingly, Web surfing itself (text basedcontent-types and images) is
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Fig. 4. Size of HTTP objects for all traffic and MHD traffic for traceAPR09.

only the third largest category contributing less than 14 % in the 2009 traces (23 % in
SEP08).

Comparing these results to all HTTP traffic [7] we find that downloads of mobile ap-
plications and XML contribute a significantly smaller fraction to the content type mix.
In contrast the volume contributed by RAR archives to all HTTP traffic is significantly
larger. Browsing is a bit more prevalent in all HTTP traffic (18–22%). Multimedia con-
tent is the biggest contributor for both. However, for all HTTP traffic flash-video is the
most popular video codec, while MHDs use MPEG coding.

The volume share per DNS domain reflects the distribution of MHD content-types.
Apple’sapple.com is responsible for most of the traffic due to application downloads.
Note, only theAUG09a trace shows a significant number of iPhone application down-
loads from third-party sites rather than the Apple’s AppStore. YouTube and Stream.fm
are the next most popular domains. For overall HTTP traffic One-Click-Hosters and
video portals are among the top domains by volume.

To answer the question if MHD HTTP traffic characteristics differ from overall
HTTP traffic we compare the distribution of HTTP object sizes. See Fig. 4 for a plot of
the Cumulative Complementary Distribution Function (CCDF) and Probability Density
Function (PDF) forAPR094. The results for the other traces are similar. We find that
both distributions are consistent with a heavy-tailed distribution (see Fig. 4(a)). While
the dominating mode of objects sizes downloaded by MHDs is larger (see support lines
in Fig. 4(b)) the tail is heavier for all HTTP traffic.

3.4 Mobile Applications

Fig. 5 shows the popularity of the top MHDs’ applications. The most popular applica-
tion is Apple’s browser Safari. Up to 62 % of all devices are using it. This is followed
by iTunes (up to 37 %) and Weather (up to 32 %). For non-Apple MHDs we observe

4 Coupled with a logarithmic scale on thex-axis, plotting the density of the logarithm of the data
facilitates direct comparisons between different parts ofthe graphs based on the area under the
curve.
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that the browser is also the most popular application. Overall we find that Apple’s de-
fault applications clearly dominate. Surprisingly, givenour own usage, the popularity
of Maps is relatively low. One possible explanation is that one rarely needs directions
while at home. CoreMedia, the media player of iPhones and iPods, is also quite preva-
lent. This application is e. g., responsible for playing videos accessed via the YouTube
application or the browser. The YouTube application itselfis only used for searching
videos, tagging, and navigating within YouTube. Locationdis the wireless positioning
system used on Apple devices.

To understand if users take advantage of specialized applications available for popu-
lar Web services we select two Online Social Networks that are popular in our user base:
Facebook and StudiVZ. For both OSNs there are specialized applications available for
the iPhone/iPod MHDs. We find that roughly half of the users (50 %± 10 %) use the
specialized applications while the other half continues touse the built-in browser. This
relationship is stable throughout our 11 month observationperiod.

3.5 Application and Media Downloads

Given that we are observing traffic from residential DSL lines we have the ability to
evaluate if users use their mobile devices or their regular computer to download mobile
applications and/or multimedia content. Due to the prevalence of Apple devices in our
dataset we now focus on Apple iTunes store and Apple AppStore.

We find that applications are predominantly downloaded directly to the MHD (see
Table 2), e.g., more than 70 % of downloads for the 2009 traces. Surprisingly, we see
that for AUG09a andAUG09b the volume of application downloads in terms of bytes
is almost the same for regular computers and MHD, i. e., the mean application size is
larger for applications downloaded by PC/Macs. A detailed analysis reveals that this is
caused by outliers; the median application size is the same for both.

We see a vastly different behavior for media downloads or purchases from Apple’s
iTunes store. Downloads are almost exclusively done via theregular computers. We see
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Table 2.Downloads from AppStore

# Apps by PC/Mac by MHD
Trace available Volume # Req Volume # Req
SEP08 3,000 <1 GB <100 <1 GB <100
APR09 7,500 <1 GB >100 >2 GB >250
AUG09a 70,000 >2 GB >150 >3 GB >450
AUG09b 70,000 >3 GB >150 >3 GB >400

several thousand media files being accessed in the 2009 traces. However, only a handful
of downloads are via MHDs which results in a small byte contribution.

4 Related Work

Only a small number of studies have focused on Internet traffic in 3G mobile or cel-
lular networks. Svoboda et al. [8] analyze various aspects of GPRS and UMTS traffic
using anonymized header traces from 2004 and 2005. They study traffic volume per
user and protocol mix. In terms of protocol mix, they find thatHTTP is the dominant
protocol with 40–60 % of traffic. Heikkinen et al. [5] analyzeP2P usage from passive
UMTS header traces in Finland from 2005–2007. Web traffic accounts for 57–79% of
bytes from mobile hand-held devices, email for 10–24%, and P2P is not noticeable.
Williamson et al. [13] analyze packet/data call event traces from a CDMA2000 net-
work from 2004. They focus their analysis on link-layer behavior, session properties,
and user mobility.

Several studies have analyzed TCP performance and low-level traffic characteris-
tics in GPRS and CDMA data networks [2, 6, 14]. Other studies analyze the content
requested or available for mobile devices. Using data from 2000, Adya et al. [1] ana-
lyze the Web server logs of a major commercial site and study the requests of mobile
clients. They find that stock quotes, news, and yellow pages were the most commonly
accessed content in their traces. Timmins et al. [9] use active measurements to crawl
the Web for sites offering specialized content for mobile devices. Verkasalo [11] stud-
ies how Symbian phone features are used by instrumenting thehandset. He finds that
the camera feature and games are the most common multimedia applications.

Trestian et al. [10] analyzes mobility and web-applicationusage in a 3G network
from a metropolitan area. We on the other hand, focus on stationary usage when MHDs
are connected at home via WiFi. Trestian et al. characterizeweb-application usage by
counting the number of HTTP request and find that social networking, music, and e-
mail are the most common web. They do not asses who manyusers utilize a particular
application, which is the approach we use to characterize application usage.

5 Conclusion

Our analysis of residential broadband DSL lines of a large European ISP shows that
there is a significant and increasing number of active MHDs. We find that iPhones
and iPods are by far the most commonly observed MHDs. This hasan impact on the
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most popular mobile applications: Safari (Apple’s browser), iTunes, and Weather. The
largest fraction by volume of MHD HTTP content is multimedia. Comparing HTTP
object sizes of overall and MHD traffic we find that MHD HTTP objects are on average
larger. The contribution of MHDs to the overall traffic volume is still small, but rapidly
growing, especially compared to the overall traffic growth.In future work we plan a
more detailed analysis of non-HTTP protocols and refine our methodology for protocol
classification. In addition, we plan to extend our analysis to traces from cellular data
networks.
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