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ABSTRACT
While residential broadband Internet access is popular in many
parts of the world, only a few studies have examined the charac-
teristics of such traffic. In this paper we describe observations from
monitoring the network activity for more than 20,000 residential
DSL customers in an urban area. To ensure privacy, all data isim-
mediately anonymized. We augment the anonymized packet traces
with information about DSL-level sessions, IP (re-)assignments,
and DSL link bandwidth.

Our analysis reveals a number of surprises in terms of the mental
models we developed from the measurement literature. For exam-
ple, we find that HTTP—not peer-to-peer—traffic dominates bya
significant margin; that more often than not the home user’s imme-
diate ISP connectivity contributes more to the round-trip times the
user experiences than the WAN portion of the path; and that the
DSL lines are frequently not the bottleneck in bulk-transfer perfor-
mance.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols—Applications; C.2.3 [Computer-Communication
Networks]: Network Operations—Network monitoring

General Terms
Measurement, Performance

Keywords
Network Measurement, Application Mix, HTTP usage, TCP per-
formance, Residential Broadband Traffic, DSL

1. INTRODUCTION
Residential broadband Internet connectivity is a mature service

in many countries. This foundation of rich access allows users to
tightly integrate network use into their lives—from checking the
weather or sports scores to shopping and banking to communicat-
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ing with family and friends in myriad ways. However, the nature of
the connectivity differs from previously studied environments such
as campus networks and enterprises in salient ways.

First, users of residential broadband connections will often have
different goals than those in other environments, and are not sub-
ject to the same sorts of strict acceptable use policies thatmay reg-
ulate their access at work or at school, such as prohibitionsagainst
accessing certain Web sites or employing certain applications. In
addition, we expect that the users who set up hosts and ancillary
equipment in residences often have no expertise in system admin-
istration, nor much desire to understand any more than is necessary
to “make it work”. Finally, unlike for campuses (and to a lesser
extent, enterprises), researchers rarely have large-scale access to
residential traffic, and thus its makeup, dynamics, and variations
remain underexamined.

In this work we present observations developed from passive
packet-level monitoring of more than 20,000 residential DSL lines
from a major European ISP. This unique vantage point provides a
broad view of residential traffic, enabling more comprehensive and
detailed characterizations than was possible in previous work, such
as Cho et al.’s studies based on backbone traces [19, 9, 10], other
work that examined specific applications like P2P-assistedcontent
distribution [27] and Skype [7], or studies using active measure-
ments [12].

In this initial exploration we focus on studying a broad range
of dominant characteristicsof residential traffic across a number
of dimensions, including DSL session characteristics, network and
transport-level features, prominent applications, and network path
dynamics. Our study discovered a number of results we found sur-
prising in terms of the standard “mental models” one develops from
the Internet measurement literature and by talking with operators
and colleagues. For example:

• HTTP traffic, not peer-to-peer, dominates. Overall, HTTP
makes up nearly 60% of traffic by bytes while peer-to-peer
contributes roughly 14%. Even if we assume that all un-
classified traffic is peer-to-peer, this latter figure only rises
to one-quarter, confirming contemporaneous observations by
Erman et al. [15] for a major US broadband provider.

• DSL sessions run quite short in duration, with a median
length of only 20–30 min. The short lifetime affects the rate
of IP address reassignments, and we find 50% of addresses
are assigned at least twice in 24 h, and 1–5% of addresses
more than 10 times, with significant implications for IP ad-
dress aliasing.



Name Time Duration Size Loss

WEEK Aug 08 14x
90 min

100–600
GB ea.

none

SEP Sep 08 24 h >4 TB several multi-second
periods with no
packets

APR Apr 09 24 h >4 TB see above

Table 1: Summary of anonymized packet traces

• Delays experienced from a residence to the ISP’s Internet
gateway often exceed those over the wide-area path from the
gateway to the remote peer. We find a median local com-
ponent of 46 ms (due to DSL interleaving), versus a median
remote component of 17 ms.

• Users rarely employ the full capacity of their lines, confirm-
ing observations by Siekkinen et al. [47]. 802.11 wireless
networking in customers’ homes, and TCP settings on the
residential systems, appear to limit the achievable through-
put.

We organize the paper as follows. After giving a short overview
of our datasets and terminology in Section 2, we look at DSL ses-
sion characteristics in Section 3. In Section 4 we explore which ap-
plications are popular among the user population, and take acloser
look at the most predominant, HTTP, in Section 5. We briefly ex-
amine transport protocol features in Section 6, and examinepath
characteristics in Section 7. We summarize in Section 8.

2. DATA AND TERMINOLOGY
We base our study on passive, anonymized packet-level ob-

servations of residential DSL connections collected at aggrega-
tion points within a large European ISP. Overall, the ISP has
roughly 10 million (4%) of the 251 million worldwide broad-
band subscribers [38]. They predominantly use DSL. The moni-
tor operated at the broadband access router connecting customers
to the ISP’s backbone. The access bandwidth of the monitored
lines varies between 1,200/200 Kbps (downstream/upstream) and
17,000/1,200 Kbps, with the exact rate depending on both thecus-
tomer’s contract and their distance from the DSLAM (the ISP’s
line-card). In the portion of the network we monitored most users
had distances low enough to in principle support 17 Mbps.

For clarity of exposition, we define the following terms. Aline
denotes a physical DSL line as identified by a line-card identifier.
We define a DSL-levelsessionas the period when the DSL mo-
dem and the line-card are together in operation. We refer to the
network between the monitoring point and the customer as thelo-
cal side, as opposed to theremote side(remainder of the Internet).
Similarly, the customer sendsupstreamtraffic and receivesdown-
streamtraffic. A flow refers to unidirectional data transmission
at the usual 5-tuple granularity (IP addresses, transport protocol,
transport ports). Aconnectionis a bi-directional transport-level
communication channel, demarked for TCP by the usual control
packets (SYN, FIN/RST) and for UDP by the the arrival of the first
packet and the absence of activity detected using an idle timeout
of 20 s. Finally, theoriginator endpoint actively initiated the con-
nection, as opposed to theresponder, which passively awaited the
connection request.

Our monitoring vantage point allowed us to observe more than
20,000 DSL lines from one urban area, connected to one access

Name Time Duration Loss

TEN Feb 2009 10 days none
EVERY4 Jan–Feb 2009 6x 24 h none

Table 2: Summary of additional anonymized DSL session in-
formation
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Figure 1: PDF of session durations for sessions with duration
longer than 5 minutes for datasetTEN.

router, for which we employed Endace DAG network monitoring
cards [14] for traffic capture. Immediately after capture weextract
application classifications (using DPD [13]; see Section 4.1) and
information such as HTTP headers from the traces using Bro [41],
storing anonymized versions of the packet and application head-
ers for later processing. Table 1 provides an overview of thedata
traces, including when gathered and overall size.WEEK reflects
14 intervals of 90 minutes each, gathered twice per day during the
same hours over the course of one week. In addition, we gath-
ered anonymized DSL session information, including the session
start and end times, anonymized IP address, anonymized line-card
identifier, and the configured access-bandwidth. Along withDSL
session traces for each of our packet measurements, we obtained a
10-day DSL session-only trace from Jan 2009 (TEN), as well as six
separate 24h session-only traces (see Table 2).

To simplify the presentation, we focus our discussion onSEP
and TEN. However, we verified our results across all traces and
explicitly point out differences. In particular, we use the14 samples
from WEEK to verify that there are no dominant day-of-week or
other biases apparent in the 24 h traces (SEP, APR). In addition,
we cross-checked our results with sampled NetFlow data exported
by 10 of the ISP’s routers. This further increases our confidence in
the representativeness of our application mix results.

3. DSL SESSION CHARACTERISTICS
We begin our study with a look at the behavior of the users’ DSL

sessions (periods of connection to the ISP’s network). A first ba-
sic question concerns the durations of such connections. Network
analysis studies often make the assumption that one can use IP ad-
dresses as host identifiers (for example, for studies that count the
number of systems exhibiting a particular phenomenon), andpre-
vious studies have found stability in these mappings on the order
of several hours to days. Moore et al. analyzed the 2001 Code



UserRequest
81.5%

SessionTimeout 7.2%

PortError 7.7%

Other 1.9%
IdleTimeout 1.7%

Figure 2: DSL (Radius) session termination causes distribution
for sessions lasting longer than 5 minutes.
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Figure 3: Relative number of concurrent DSL lines across time
for one 24h weekday period of datasetTEN. Note the base-line.

Red outbreak and found that for larger timescales (days to weeks),
IP addresses cannot be used as reliable host identifiers due to IP
reassignment [35]; they did not examine timescales below several
hours. Xie et al. observed some highly volatile dynamic IP address
ranges, which they attributed mainly to dial-up hosts [54].

Thus, we expected to find typical session lengths of several
hours. However, we find instead that many are quite short. We
base our analysis on Radius [43] logs, which many European ISPs
use for authentication and IP address leasing. Radius supports two
timeouts,SessionTimeoutand IdleTimeout, though the monitored
ISP only makes use of the first.SessionTimeoutperforms a role
similar to the DHCP lease time, limiting the maximum lifetime of
a session. The ISP sets it to 24 hr (a popular choice among Euro-
pean ISPs [52, 37]). DSL home routers generally offer an option to
reconnect immediately after a session expires. However, incontrast
to DHCP, Radius does not provide an option to request a particular
IP address (e.g., the previously used IP address), and the ISP allows
addresses to change across sessions.

We analyzed the DSL session duration of the Radius logs, ex-
cluding sessions lasting under 5 minutes. Surprisingly, wefind that
sessions are quite short, with a median duration of only 20–30 min-
utes. Figure 1 shows the distribution of DSL session durations for
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Figure 4: Bandwidth usage of all DSL lines across time (1 min
bins).

those longer than 5 minutes, computed over all sessions, along with
the distribution of the median session duration computed per DSL
line. The data exhibits two strong modes around 20–30 minutes
and 24 hr (the maximum duration given the Radius setup), parti-
tioning the DSL lines in two large groups: always-connectedlines,
and lines that only connect on demand and disconnect shortlyaf-
ter. We do not find much in between (lines connected for several
hours). While previous work found short sessions (70% lasting at
most 1 hour) in the context of wireless university networks [30], we
found it striking to discover such short DSL sessions in residential
networks, in violation of our mental model that sessions would be
significantly longer-lived.

To check if there is a significant difference in DSL session du-
rations for P2P users vs. non-P2P users (see Section 4), we parti-
tioned the DSL-lines into two groups. Overall, the characteristics
of the distribution are similar, with two prevalent modes. However,
we find that P2P users tend to have longer session durations and
that a larger fraction of P2P users always remain connected.

To better understand the high prevalence of short sessions,we
examined the Radius termination status in the logs. Radius differ-
entiates between 18 termination causes. Figure 2 shows the distri-
bution of causes for sessions longer than 5 minutes. We observe
that more than 80% of sessions are terminated by user request(this
rises to 95% for sessions under 5 minutes). Most likely theseare
caused by idle timeouts in the DSL modem on the client side.
While most current broadband contracts are flat-rate, in thepast
time-based contracts were popular in Europe. Indeed, theselatter
are still offered by most European ISPs. Therefore, it is likely that
consumer DSL routers come with a small idle timeout as a fac-
tory default in an effort to aid users in keeping down costs, and we
verified this for several popular home routers. The second most
common termination cause is PortError, which likely results when
users power off their DSL modem as part of powering down their
entire computing setup.

Since many DSL sessions are short and Radius does not preserve
IP address assignments across sessions, we therefore expect (and
find) IP addresses used for multiple DSL lines across each dataset.
During a 24 hr period we find 50% of the IP addresses assigned to
at least 2 distinct DSL lines, and 1–5% to more than 10 DSL lines.
These results underscorethe peril involved in using an IP address
as a long-term reliable host identifier.



Previous work found that for consumers diurnal patterns start
with activity in the morning, steadily increasing throughout the
course of the day, with the height of activity starting in theearly
evening and lasting till midnight [19, 17]. We see this same overall
pattern in terms of the number of active DSL sessions, as shown
in Figure 3. However, we note that the variation is in fact modest,
with 40% of the lines permanently connected. We also observea
slight day-of-week effect, with Sundays having larger numbers of
concurrent sessions, and Friday/Saturday having lower daily max-
ima than other weekdays.

We also observe a diurnal pattern in bandwidth usage, per Fig-
ure 4, with the relative differences now being much more pro-
nounced. After all, keeping a session alive does not imply any
bandwidth usage per se.

Our data also offers us an opportunity to analyze the potential
resource requirements of an ISP wide NAT deployment. In partic-
ular, we study how many public IP addresses are needed to support
the traffic on the monitored lines. For this purpose we count the
number of concurrently active TCP/UDP connections and add a5-
min or 10-min timeout to the duration of each 5-tuple. Doing so
implies that we do not allow the immediate reuse of each 5-tuple.
Under the assumption that a single public IP address can support
65,536 concurrent connections (due to available port space) we find
that a single public IP address suffices to support 1,300–2,000 ac-
tive lines with a 10-min timeout, and roughly twice that whenusing
a 5-min timeout.

Given the maximum number of concurrently connected lines, 5–
10 public addresses would in principle suffice to accommodate the
monitored DSL-lines—a huge reduction of the required public IP
address space.

So far we only considered outgoing connections, yet a NAT must
also accommodate incoming connections. We find that very few
lines utilize incoming connections for traditional services such as
HTTP. Most successful incoming connections are to ports com-
monly used for VoIP (SIP and RTP), default P2P ports, IPSec key
management, and traceroute destination ports. It is plausible that
P2P applications can use Universal Plug-and-Play to dynamically
negotiate ports with the NAT devices. SIP and RTP include NAT
traversal solutions and proxy services. In addition, we findthat al-
most all SIP connections are to/from the ISP’s SIP server, since SIP
is used as a transparent VoIP replacement for end-customers. More-
over, one does not have to support traceroute. As such it appears
that one would not need too many additional public IP addresses
for incoming connections.

While we acknowledge that more in-depth study is needed, it
appears that such NAT deployment would indeed conserve a very
large number of public IP addresses. Whether it proves manage-
able, and/or impedes innovation, remains a separate question.

4. APPLICATION USAGE
To understand the popular applications among our user popu-

lation, we examine our application classifications (made atdata-
collection time) and anonymized application-layer headertraces.
We in addition assess how well purely port-based classification
would perform for correctly identifying residential traffic patterns,
and characterize traffic asymmetries.

Previous studies of Internet application mix found HTTP to pre-
dominate around the turn of the century. Fraleigh et al. [18]an-
alyzed packet level traces recorded from the Sprint backbone in
2001, finding that in most traces HTTP contributed> 40% of all
bytes, though several traces had P2P contributing 80%.

Subsequent studies found that P2P became the dominant appli-
cation. Ipoque and Cachelogic both used data from their deployed

HTTP
57.6%

unlcassified
10.6%

otherDPD 10%
BitTorrent 8.5%

eDonkey 5%

NNTP 4.8%

well−known 3.6%

Figure 5: Application Mix for trace SEP.

deep packet inspection and traffic management systems at selected
customers sites to assess the application usage [45, 46, 40]. Cache-
logic claimed that by 2006 P2P accounted for more than 70% of
the traffic, with Ipoque supporting this claim for 2007. For 2008
Ipoque found that P2P in Europe accounted for more than 50% of
traffic (with Web contributing another 25%).

On the other hand, Hyun-chul et al. reported that payload-based
analysis conducted in 2004 from within the PAIX backbone found
almost no P2P traffic, but more than 45% HTTP [23]. On the other
hand, the same study developed how at various university networks
the traffic differs; for example, at KAIST in 2006 they found un-
der 10% HTTP, and 40–50% P2P.

Cho et al. [9, 10] also found in 2008 that TCP port 80 contributed
only 14% of all bytes in Japanese ISP backbones (9% in 2005),
with the bulk of traffic being on unassigned ports. None of the
default P2P ports contributed more 1% of the traffic volume. (The
authors point out that WINNY, the most prelevant P2P application
in Japan, uses unassigned ports.) They found that residential traffic
exhibited a shift to more streaming and video content, whichagrees
with recent blog and news reports that claim that P2P traffic has
somewhat declined, with streaming media increasing [50, 3]. With
an assumption that the unassigned ports indeed reflected P2P, their
datasets indicated that P2P dominated the total traffic volume.

From a somewhat different perspective, Kotz and Essien [29,
30] reported that 50% of wireless traffic in 2001 on a university
campus, which included residential buildings, used HTTP’swell-
known ports, with 40% of this trafficincoming to local servers.
Henderson et al. [22] compared these results with newer traces
from 2003/2004 of the same network, finding major shifts in the
application mix (HTTP 63%→27%, File systems 5%→19%, P2P
5%→22%), and that more traffic stayed on-campus than in 2001
(70%, up from 34%). Of the P2P traffic, 73% remained internal.
Therefore, we cannot easily compare these results to residential
broadband use. Finally, Fraleigh et al. [18] also used a port-based
approach on 2001 data, finding that on some links 60% of the bytes
come from P2P and only 30% from HTTP, although most of their
traces have more than 40% HTTP.

Given this context, we now turn to an analysis of application
usage in our 2008/2009 residential traces.

4.1 Application usage analysis
To robustly identify application protocols, we employ the Bro

system’s Dynamic Protocol Detection (DPD) [13]. DPD essen-
tially tries to parse each byte stream with parsers for numerous
protocols, deferring determination of the corresponding applica-
tion until only that application’s parser recognizes the traffic. DPD



also uses regular expression signatures to winnow down the initial
set of candidate parsers. The Bro distribution includes full DPD
parsers/recognizers for BitTorrent, FTP, HTTP, IRC, POP3,SMTP,
SSH, and SSL. We extended the set of detectors with partial rec-
ognizers for eDonkey and Gnutella (both based on L7-filter signa-
tures [32]), NNTP, RTP, RTSP, SHOUTcast, SOCKS, and Skype.

In the SEP trace we can classify more than 85% of all bytes,
with another 3.6% using well-known ports, as reflected in Figure 5.
We find thatHTTP, not P2P,is the most significant protocol, ac-
counting for 57% of residential bytes. We also find that NNTP
contributes a significant amount of volume, nearly 5%. Almost all
of the NNTP bytes arise due to transfers of binary files, with RAR-
archives (application/rar) being among the most common file types,
suggesting that the traffic reflects the equivalent of file-sharing.

We find that P2P applications—BitTorrent, Gnutella, and
eDonkey—contribute< 14% of all bytes, with BitTorrent the most
prevalent, and Gnutella almost non-existent. However, theL7-filter
signatures for eDonkey may be incomplete. We observe a signif-
icant amount of traffic (1.2%) on well-known eDonkey ports that
the classifier fails to detect as eDonkey. The distribution of connec-
tion sizes for this traffic closely matches that for traffic positively
identified as eDonkey (and differs from other applications). If we
presume that this indeed reflects eDonkey traffic, then the overall
share of P2P traffic increases to 17–19%, with eDonkey’s popular-
ity roughly the same as BitTorrent’s. But even if we assume thatall
unclassified traffic is P2P, the total P2P share still runs below 25%.

P2P applications could also in principle use HTTP for data
download, thus “hiding” among the bulk of HTTP traffic and in-
creasing the significance of P2P traffic volume. However, ourin-
depth analysis of HTTP traffic (Section 5) finds that this is not the
case.

Streaming protocols1 (RTSP, RTMP, SHOUTcast) account for
5% of the traffic in terms of bytes. We identify RTSP and SHOUT-
cast using partial DPD parsers, while we identify RTMP’s based
only on its well-known port. We also find noticeable Voice-over-IP
traffic (Skype [7], RTP), about 1.3% of the total bytes.

In order to increase our confidence in the representativeness of
our application mix results, we analyzed sampled NetFlow data ex-
ported by 10 of the ISP’s routers. This data shows that 50% of
the traffic comes from TCP port 80. We further compared our re-
sults with those from a commercial deep-packet-inspectionsystem
deployed at a different network location, finding a close match.

Our analysis of the other traces confirms the findings outlined
above. In particular the other traces confirm that our results are not
biased by the day-of-week we choose. However, while the HTTP
traffic share in theAPR trace is about the same, we find slightly
more unclassified traffic. We note that the overall P2P trafficde-
creases somewhat, and shifts from eDonkey to BitTorrent (now
9.3%). Also the fraction of NNTP traffic decreases. On this day
it only accounted for 2.2% of the traffic. Our hypothesis is that es-
pecially the latter observations reflect day-to-day variations rather
than indications of trends, but we will require longer-timemeasure-
ments to determine this definitively.

We might expect that application usage differs widely between
users with different access speeds. Figure 6 shows the application
mix seen for different downstream bandwidth rates. Although the
mix does vary, the changes are modest, other than for more P2P
traffic with higher bandwidths, and much higher NNTP prevalence
for the 17000 Kbps class. However, only a small percentage oflines
use NNTP, so its contribution to traffic mix can see more variation
across different types of lines.

1We do not consider video delivery via HTTP as streaming. We
refer to those as progressive HTTP downloads.
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Figure 6: Relative application mix per access bandwidth. Bot-
tom bar is HTTP, top bar unclassified.

However, we do find that lines with higher access bandwidth
have a higher utilization in terms of average volume per line.
Lines in the 3500 and 6500 Kbps categories contribute about twice
as many bytes per line than lines in the 1200 Kbps class, and
17,000 Kbps lines three times more. We also find that general traf-
fic per line is consistent with a heavy-tailed distribution,and the
top 2.5% of lines account for 50% of the traffic.

To see if time-of-day effects influence the application mix,we
examine the application mix per hour, see Figure 7. We would ex-
pect to to observe more bulk downloads and less interactive traffic
during off-hour period, which our data confirms. Night-timetraf-
fic includes a larger fraction of P2P traffic, though HTTP remains
dominant during every time slot. Also, we again note high variabil-
ity in NNTP due to the small number of lines using it.

In contemporaneous work Erman et al. [15] studied the applica-
tion mix and HTTP content type of a major US broadband provider
in the context of understanding the potential for forward caching.
They find that HTTP contributes 61% on average and 68% dur-
ing the busy-hour to the traffic volume in the downstream direc-
tion while P2P only contributes 12%. As such, their results are
strikingly similar to our results, strengthening the observation that
HTTP is again on the rise and P2P on the decline.

4.2 Application mix of P2P VS. Non-P2P lines
Next we study if the application usage of those lines that fre-

quently use P2P differs from those that do not. We find that roughly
3% of DSL-lines use P2P protocols and that their traffic contribu-
tion accounts for 30% of overall volume. If a line uses P2P proto-
cols, they usually also account for most of the line’s traffic: 29%
BitTorrent and 17% eDonkey. However, HTTP is still popular and
is responsible for 23% of transferred bytes. We also note that the
fraction of unclassified traffic is higher at 23%, corresponding to
roughly 64% of all unclassified traffic. There is hardly any NNTP
usage, only 0.6% of bytes.
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Protocol VPD/VD VPD/VP

HTTP 97.5% 98.1%
BitTorrent 4.8% 66.1%
eDonkey 36.6% 55.9%
SSL 75.2% 86.1%
NNTP 66.7% 95.3%
RTSP 92.6% 99.1%

Table 3: DPD vs. destination port.VD is the volume identified
by DPD for a given protocol P, VP is the volume observed on
the P’s default port(s), and VDP is the intersection of the two
(running on P’s default port and detected asP).

Non-P2P lines predominantly use HTTP, for which it contributes
72% of their traffic volume, followed by NNTP with 6.5%, with
only 5.2% of the traffic unclassified. Streaming services arealso
more dominant in this group (6.7%).

4.3 Does port-based classification work?
Very often in networking studies it is easier or more tenableto

acquire TCP/IP transport information rather than relying on deep
packet inspection systems. A significant question concerning the
accuracy of such studies regards the degree to which one can
soundly infer application protocols based solely on the TCP/UDP
port numbers that connections use. Certainly, in adversarial set-
tings, classification based on port numbers has quite limited power,
due to the ease by which end systems can vary the ports they use.
However, for non-adversarial situations, one might hope tolever-
age a predominant tendency for applications to indeed stickwith
the port assigned for their use.

Our DPD-based analysis—which is highly accurate for those ap-
plications where we have a full protocol parser, and still potentially
quite accurate when we employ only a partial parser—presents an
opportunity to assess the accuracy of port-based classification using
fairly solid ground truth.

Numerous previous studies have indicated that the advent ofP2P
has rendered port-based approaches infeasible. Cho et al. [10]
found that on Japanese Internet backbone links, 79% of traffic (by
bytes) uses unknown ports, and that TCP port 80 contributes only
14% of bytes. In 2004 Karagiannis et al. [26] found P2P traffic
increasingly moving away from well-known ports to dynamically

negotiated ports. Kim et al. [23] found that port-based detection
quality is inversely proportional to the fraction of P2P traffic.

We confirm that for current residential traffic a port-based ap-
proach works quite well. Table 3 shows how well a port-based ap-
proach would have performed for dominant application layerpro-
tocols. For each protocolP, columnVPD/VD is the fraction of the
traffic volume observed onP’s default port(s) that DPD identifies
as P. ColumnVPD/VP shows the proportion of the traffic onP’s
port that would be correctly identified by only inspecting the port
number.

We interpret the table as follows. Most of the HTTP traffic
(97.5% of bytes) does indeed appear on port 80 (middle column),
and when looking at traffic on port 80 we find that 98.1% of those
bytes come from HTTP (righthand column). The largest non-HTTP
application on port 80 is SHOUTcast, a HTTP-like streaming pro-
tocol. We therefore conclude that for our traffic, classifying port 80
traffic as HTTP yields a good approximation for the total volume
of HTTP traffic.

NNTP can only be partially identified by its default port (119).
About two-thirds of NNTP traffic uses that port, and of the traffic
appearing on that port, nearly all (95.3%) is indeed NNTP. From
DPD, we know that the remainder uses the well-known HTTP
proxy port, 3128. For SSL-based protocols (HTTPS, IMAPS,
POP3S, SSMTP, NNTPS) we find roughly 75% using well-known
ports. More than 90% of RTSP bytes appear on its default
port (554).

The story is vastly different for P2P protocols, however. Since
many institutions try to block P2P traffic with port-based filters,
most P2P protocols have evolved to use non-standard, dynamically
negotiated ports. Still, one third of the detected eDonkey traffic
uses its well-known ports, and finding traffic on either thoseports
or on the BitTorrent ports generally means that the traffic isindeed
caused by those protocols. (Interestingly, we find that 3% ofBit-
Torrent traffic appears oneDonkeyports.)

4.4 Traffic symmetry
A common assumption regarding residential traffic is that the

downstream dominates the upstream, i.e., most bytes are transfered
to the local side. Indeed, this assumption has shaped—and isin-
grained in—the bandwidth allocations of ADSL and cable broad-
band offerings. In addition, the prevalence of incoming connections
affects the feasibility of carrier-grade network-address-translation
(NAT).

In our datasets, we observe that most bytes appear in connections
originated locally, with only 10% due to connections originated re-
motely. The largest fraction of incoming traffic isunclassified (33%
of bytes), significantly higher than for outgoing connections, and
with P2P the most significant contributor by volume (28% BitTor-
rent, 17% eDonkey). Voice-over-IP and streaming protocolsalso
contribute significant volume to incoming connections (10%). In-
coming FTP data connections for active FTP sessions accountfor
just over 1% of bytes in incoming connections. Finally, we find
that very few lines offer “classic” Internet services like SMTP or
HTTP, nor did they appear significantly involved in DDoS or scan-
ning activity (according to Bro’s scan detector).

When looking at the number of bytes transfered upstream and
downstream, i.e., the symmetry of traffic, we find that 85% of all
bytes come downstream, i.e., the asymmetry assumption doeshold
(though likely bandwidth asymmetry helped shape this). This pro-
portion is much higher than seen in the Japanese backbone stud-
ies [19, 9], which found only 55% of volume was downstream.
However, they found P2P dominated their traffic mix, thus con-
tributing to symmetry. For our traffic, we find that for P2P ap-



plications only 59% of bytes come downstream, yielding an up-
load/download “share-ratio” of 41/59≈ 0.7—still resulting in less
symmetry than seen in the Japanese studies.

5. HTTP USAGE
As HTTP dominates the traffic in our datasets, we now examine

it more closely to characterize its usage. A basic question concerns
what has led to its resurgence in popularity versus P2P traffic, with
two possible reasons being(i) HTTP offers popular high-volume
content, e.g., [8, 42], and/or(ii) HTTP serves as a transport protocol
for other application layer protocols, including possiblyP2P [50,
3]. We find that 25% of all HTTP bytes carry Flash Video, and
data exchanged via RAR archives contributes another 14%. Thus,
clearly much of HTTP’s predominance stems from its use in pro-
viding popular, high-volume content. We further find that interms
of volume, HTTP isnot significantly used for tunneling or P2P
downloads.

Many facets of HTTP usage have seen extensive study, as thor-
oughly surveyed by Krishnamurthy and Rexford [31]. Some stud-
ies have focused on understanding user behavior [4, 5, 11], while
others have examined changes in content [53] and the performance
of web caching [1, 5, 16]. Other work has looked at media server
workloads regarding file popularity and temporal properties, such
as in terms of live media streams collected from a large CDN [49],
and file reference characteristics and user behavior of a production
video-on-demand system in large-scale use [55].

More recently, various efforts have aimed at understandingfrom
passive measurements how the rapid advent of “Web 2.0” appli-
cations has changed HTTP traffic patterns [44], as well as Web-
based applications such as YouTube [20, 57] and online social net-
works [21, 36]. Others have employed active probing to studyspe-
cific features of such applications [8].

Sites likealexa.com employ user-installed toolbars to track the
popularity of various Web sites across demographic groups.They
find thatgoogle.com, yahoo.com, youtube.com, andfacebook.com
currently rank among the most popular sites in terms of number of
visits. In contrast, in this study we analyze popularity in terms of
traffic volume.

5.1 Content Type Distribution
We use Bro’s HTTP analyzer to parse the anonymized HTTP

headers and compute the size of each HTTP request/response pair.
To identify the content types of objects, we both examine theHTTP
Content-Type header and analyze the initial part of the HTTP body
usinglibmagic. We find more than 1,000 different content-types in
HTTP headers. Surprisingly, the results of these two approaches
often disagree: 43% of all HTTP bytes (28% of requests) exhibit
a mismatch. Some disagreements are minor and easy to resolve.
For example, in the absence of a standardized MIME type repre-
sentation we can find several different strings used for the same
type. We also often see generic use ofapplication/octet-stream as
Content-Type. In other cases, the sub-type differs: for example, the
Content-Type header may specify “image/gif,” while libmagic yields
“ image/jpeg”.

WhenContent-Type andlibmagic disagree, we try to identify the
most likely “true” content type by using heuristics. We start by nor-
malizing the content types and giving priority tolibmagic for those
content types with well-known formats, e.g., most image andvideo
types. For other formats, we manually examine the mismatches and
pick the most likely resolution. We report mismatches we could not
resolve as “x/x” in our results, and generic or unidentified content
types, such asapplication/octet-stream, as “n/n”. All in all, our

video/flv 25.2%
application/rar

14.7%

n/n 12.7%

other 11.7%

image/* 11.5%
video/* 7.6%

text/html 7.2%

x/x 4.9%

text/javascript 2.4%
audio/* 2.2%

Figure 8: Top content-types for HTTP by bytes for traceSEP.

analysis illustrates the need for considerable caution when basing
an assessment of content types solely on theContent-Type header.

Figure 8 shows a pie chart of the distribution of bytes per con-
tent type from theSEP trace. The most common content-type by
volume is Flash Video (video/flv)—the format used by sites such as
youtube.com and many news sites—which contributes 25% of the
bytes. This is followed by the archive format RAR (application/rar),
which accounts for 15% of HTTP traffic.

The unknown or unidentifiable content-types together account
for 18% of the HTTP traffic. We find that a significant portion
of this traffic reflects automated software updates, as 14% ofthe
unidentifiable bytes come from a single software update site. Im-
age types (GIF, PNG, and JPEG) contribute 11.4% of bytes, while
video types other than Flash account for only 7.6%.

During the night we observe a higher fraction of RAR objects
and unknown objects, while the relative popularity of HTML and
image types decreases. This indicates that the former arisedue to
bulk transfers rather than interactive browsing.

The general content-type distribution is essentially unchanged
when considering theAPR trace. However, the fraction of non-
Flash Video (video/flv) video content increases (to 9%), while au-
dio content decreases. Moreover, the fraction of unknown content
types from the automated software site falls to 7.5% inAPR. We
also confirmed that the presented results are not subject to day-of-
week effects by comparing them with results fromWEEK trace.

Drawing upon recent data from a major US broadband provider,
Erman et al. [15] also report similar content type distributions.
They find that video content corresponds to 32% of HTTP traffic,
and compressed file downloads, e.g., RAR, for 16% of traffic.

When separating lines with and without P2P protocol usage, we
find that the content-type distribution for non-P2P lines closely
matches the overall one. However, lines that use P2P have a smaller
fraction of Flash Video (20%) and RAR archives (11%), and a
larger fraction of unidentified content-types (25%) We notethat
28% of this unidentified traffic is served from CDNs and 8% from
a Direct Download Provider.

5.2 Distribution Across Domains
Next we examine the distribution across domains, presenting the

results for theSEP trace in Table 4. We base our analysis on ex-
tracting the second-level domain from the HTTPHost header. We
find that the byte distribution per domain fairly closely matches a
Zipf distribution, per Figure 9. The top 15 domains account for
43% of all HTTP bytes. Since Flash Video is the most voluminous



Rank Domain Fraction of Traffic

1 Direct Download Provider 15.3%
2 Video portal 6.1%
3 Video portal 3.3%
4 Video portal 3.2%
5 Software updates 3.0%
6 CDN 2.1%
7 Search engine 1.8%
8 Software company 1.7%
9 Web portal 1.3%

10 Video Portal 1.2%

Table 4: Top domains (anonymized) for traceSEP
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Figure 9: CCDF of HTTP volume per domain, for domains
with >1 MB of total traffic for trace SEP.

content-type, it is not surprising to find sites offering videos among
the top domains, and indeed most of the traffic to/from these video
portals has typevideo/flv. A Direct Download (DDL) provider also
accounts for a significant fraction of HTTP traffic. These DDL
providers (also called “One-click providers”) host large files for
their customers. When a user uploads a file, they receive a (en-
coded) URL that provides subsequent access for downloadingthe
file. Users can then distribute the URLs to friends or share them
in online forums. About 16% of the HTTP traffic involves Direct
Download providers, with one provider in particular heavily dom-
inating this traffic (93% of DDL traffic volume). Nighttime traffic
exhibits a strong shift towards DDL sites; they account for 24% of
HTTP bytes during the 4 AM hour. DDL providers also originate
almost 90% of allapplication/rar bytes.

Similar results hold for theAPR trace, with only some changes in
the lower ranks. Given the small difference in volume for these do-
mains, we attribute such changes to normal day-to-day differences
rather than long-term trends.

5.3 User-Agent Popularity
To assess the popularity of different types of web clients, we ex-

tract theUser-Agent headers from the HTTP requests, group them
into broader categories, and then rank these categories by transfered
volume. We group user-agents that we cannot classify, and requests
lacking aUser-Agent header, as “Unclassified”. Table 5 shows the

Rank User-agent Fraction of Traffic

1 Firefox 3 24.6%
2 MSIE 7 20.4%
3 MSIE 6 13.6%
4 Firefox 2 11.9%
5 Unclassified 5.5%
6 Safari 4.3%
7 Network libraries 4.0%
8 Opera 2.8%
9 Streaming clients 2.5%

10 Download managers 1.6%

Table 5: Top user-agents by volume

results. We can attribute more than 82% of HTTP traffic to tradi-
tional Web browsers, with Firefox and Internet Explorer each hav-
ing a share of approximately 35% each, while Safari and Opera
only contribute 6% and 3% of HTTP traffic. We also crosschecked
with the results described above to verify that a large fraction of
the traffic due to these traditional web clients involves well-known
domains. We do not see a significant volume contribution by ad-
vertised P2P clients. Further, even if such P2P traffic fallsinto the
“Unclassified” bin, it represents little in terms of overall volume.
Therefore, in our dataset we do not observe a large proportion of
P2P systems running on top of HTTP, unless they employ mimicry
of well-known browsers, and also manipulate content types and do-
mains.

6. TRANSPORT PROTOCOL FEATURES
We next delve into exploring which of the various TCP options

and configurations we see in actual use. Doing so allows us to cali-
brate our expectations with regard to TCP throughput performance,
which we then explore in Section 7. We limit our analysis to con-
nections that transfer some actual TCP payload, which excludes a
large number of unproductive connections caused by backscatter,
scanning, or other establishment failures. The excluded connec-
tions contribute about 0.1% of all bytes, but amount to 35% ofall
connections.

To compare our results to previous studies, we need to determine
the usage of options on aper-hostbasis. However, unlike previous
studies we expect to find our dataset rife with NATs (within the
DSL customers’ home networks). Therefore, isolating individual
hosts presents a challenge, since multiple hosts may share asingle
DSL line. To address this difficulty, we assess option usage in two
ways. The first technique considers each DSL line identifier as a
single host, and attributes any options observed in packetsassoci-
ated with the line to that host. Doing so obviously undercounts the
number of hosts. For the second approach, we assume that each
distinct TCP option set represents a distinct host. This likely over-
counts the number of hosts, so by employing both strategies we can
bracket the ranges for host-based use of various TCP options.

Window Scaling
Window Scaling enables efficient data transfer when the
bandwidth-delay product exceeds 64 KB. We find window scaling
advertisements in 32–35% of the SYNs in our dataset, with 4% of
the connections failing to successfully negotiate the use of window
scaling. When focusing on only connections transferring more than
50 KB, we find only a small change, with 34–38% successfully ne-
gotiated window scaling. Finally, we observe that 45–62% ofthe



hosts in our datasets advertise window scaling (across traces and
across our under- and over-estimates for host count). In contrast,
Medina et al. reported that 27% of the observed client hosts adver-
tised window scaling in early 2004 [34]. Of those advertisements,
97% were found to be zero (i.e., the client advertises theability to
scale windows, but not the desire to do so). In our dataset, wedo
not find a predominance of scale factors of zero; most scale fac-
tors are in fact non-zero, and cover a wide range. Even with our
rough counting of hosts, we can see that use of larger windowshas
become more routine over the past 5 years.

TCP Timestamp
Timestamps help TCP to compute more accurate round-trip time
estimates, and serve to disambiguate old packets from new ones
in very high-speed transfers. We observe timestamps advertised
in 11–12% of the connections in our dataset, with 8% of the con-
nections ultimately negotiating their use. We further observe that
21–39% of the hosts (across traces and host-counting methods) ad-
vertise timestamps, versus 22% as observed by Medina et al. [34].
Further, Veal [51] probed a variety of web servers and concluded
that 76% of the servers will use timestamps when requested bythe
client.

Selective Acknowledgment (SACK)
SACK facilitates more effective recovery from lost data segments.
We find that 97% of connections in our dataset advertise support
for SACK, with 82% of the connections successfully negotiating
its use. In addition, we observe that roughly 9% of the connec-
tions that negotiate SACK have at least one instance wherebya
receiver uses SACK to report a discontinuous arrival (either due
to loss or reordering). Finally, we observe 82–94% of the hosts
in our dataset advertising SACK (across traces and host-counting
strategies). Medina et al. reported that in 2004 88% of the clients
attempted to use SACK [34], and that active probing found roughly
69% of successfully contacted servers supported SACK.

Maximum Segment Size (MSS)
The MSS governs the largest data segment a TCP sender will trans-
mit. Across all TCP traffic, we find advertised values in the 1300–
1460 byte range in 98% of the connections. These values arise
from the very common 1500 byte Ethernet MTU, minus space re-
quired for TCP/IP headers, as well as space for additional tunneling
headers.

Explicit Congestion Notification (ECN)
ECN enables routers to signal conditions of congestion without
necessarily employing packet drops. We find virtually no support
for ECN, observing only a handful of hosts (no matter how theyare
counted) advertising support for it in their SYN packets.

Summary
We find that usage of performance improving TCP options varies
considerably. SACK enjoys widespread deployment and use; win-
dow scaling is quite common in terms of both support and effective
(non-zero) employment; ECN sees almost no use.

7. PERFORMANCE/PATH CHARACTER-
ISTICS

We now turn our attention to factors that affect the performance
that users experience—spanning network effects, transport proto-
col settings, application behavior, and home networking equip-
ment.

In a previous study, Dischinger et al. [12] recently used ac-
tive measurements to probe 1,900 broadband host from 11 major
providers in Europe and North America. They found that the last-
mile predominates as the performance bottleneck and induces high
jitter in the achievable throughput. They also found that broadband
links have large queuing buffers of several hundred to several thou-
sand ms, and that 15% of last-mile RTTs exceed 20 ms. However,
they do not compare access versus remote contributions to RTT.
While their study covers a more diverse set of hosts, our approach
leverages capturing all activity of residential hosts.

Jiang and Dovrolis [25] estimated TCP RTTs from passive mea-
surements of unidirectional packet data using SYN-SYN/ACK-
ACK handshakes and a slow-start based approach. They found
that 90–95% of connections have RTTs< 500 ms at various aca-
demic links. Aikat et al. [2] examined the variability of RTTswithin
a connection using data from the University of North Carolina.
They report that a striking 15% of TCP connections have median
RTTs>1 s. However, their analysis does not take delayed ACKs
into account. Fraleigh et al. [18] analyzed packet level traces from
the Sprint backbone from 2001, finding that the median RTT never
exceeded 450 ms across their 9 traces. Only 3 traces had median
RTTs>300 ms, while 6 traces had median RTTs of<50 ms.

Siekkinen et al. [47, 48] analyzed performance limitationsex-
perienced by ADSL users using passive measurements of approxi-
mately 1,300 DSL clients. They found that most users do not uti-
lize the available bandwidth, and that most traffic is application-
limited—particularly for P2P applications, which often actively
limit the transfer rate. Network limitations like congestion or TCP
windows only affected a small number of transfered bytes.

Zhang et al. [56] analyzed Internet flow traces from various ac-
cess, peering, and regional links within a Tier-1 provider in 2002 to
understand from where performance bottlenecks arose. Theyfound
that the most frequent performance limitations were network con-
gestion and advertised receiver window sizes.

Given this context, we now turn to an analysis of performance
limitations in our 2008/2009 residential traces.

7.1 TCP performance limitations
TCP’s advertised window can have a significant impact on per-

formance, as the window must equal or exceed the bandwidth-delay
product for a connection to fully utilize the network path’scapac-
ity. If too small, the data sender must pause and wait for ACKsbe-
fore sending additional data, whereas with a large enough window
data can steadily stream. We use the access bandwidth to compute
bandwidth-delay products for all connections and find that in the
downstream direction, 44% of all connections that transferred at
least 50 KB have a bandwidth-delay product that exceeds the max-
imum advertised window, but this proportion drops to 15% forthe
upstream direction (which due to bandwidth asymmetry does not
require as large of a window).

We find that the maximum advertised window observed per con-
nection tends to be fairly small, with a median across all connec-
tions in our dataset of 64 KB. Interestingly, the use of window
scaling does not significantly affect advertised window size; the
median for such connections increases only slightly, to 65–67 KB.
However, the 75th percentile for connections with window scaling
is roughly 190 KB, as opposed to the limit of 64 KB imposed by a
lack of window scaling.

We note, however, that connections with small advertised win-
dows might in fact have their performance more significantlylim-
ited by TCP’s response to congestion. We assess loss/reordering
events by checking whether a sender ever fails to send monotoni-
cally increasing sequence numbers. Loss plays a key role in achiev-
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Figure 10: TCP round trip times for trace SEP.

able TCP performance [33, 39], and TCP can confuse reordering
for loss [6], causing it to perform congestion control actions that
hinder performance. We find that roughly 10% of TCP connec-
tions experience such events. Furthermore, 33% of connections
that transfer> 50 KB experience loss or reordering. These rates
are consistent with the observation that 8% of connections that ne-
gotiated SACK actually exchanged a SACK block, as did 30% of
connections that transfered at least 50 KB. In addition, we find that
about 1% of connections required SYN retransmissions in order to
successfully establish.

Finally, we find that at some points the receiver’s advertised win-
dow “closes” (drops to zero). Generally, this behavior indicates
that the receiving application has failed to drain the operating sys-
tem’s TCP buffer quickly enough, and therefore TCP must gradu-
ally advertise less available buffer. As the advertised buffer space
decreases, the sender’s ability to keep enough data in flightto fully
fill the network path diminishes. We find that for 4% of the down-
stream connections the advertised window drops to zero, while this
phenomenon occurs for 3% of the upstream connections.

7.2 Round-trip-times (RTT)
We gathered our measurements at the ISP’s broadband access

router, which is the first IP router that traffic from the localhosts
encounters. We can therefore divide the end-to-end RTT thatthe
residential connections experience into a local component, mea-
sured from our monitor to the end system and back, and a remote
component, from our monitor over the wide-area Internet path to
the host at the other end of the connection.

We estimate TCP RTTs using the connection setup handshake
(SYN, SYN/ACK, ACK) [25], ignoring connections with SYN
or SYN/ACK retransmissions, and connections in which the final
ACK carries data (which can indicate that an “empty” ACK has
been lost). Figure 10 shows the smoothed probability distribution
of the RTTs. We found it quite surprising to observe that in many
cases the local RTT exceeds the remote RTT, i.e.,the time to sim-
ply get to the Internet dominates over the time spent traveling the
Internet.

The difference manifests itself throughout most of the distribu-
tion. For example, the median, 75th, 90th, and 99th percentiles of
the local RTTs are all substantially larger than their remote coun-
terparts, and we find that 1% of local RTTs exceed 946 ms, while
for remote RTTs the corresponding delay quantile is only 528ms.

The 99th percentile of total RTT is 1328 ms, with a 90th percentile
of 278 ms and a median of 74 ms. While RTTs are often fairly
low, we also observe several cases for which the local RTT reaches
values in the 2–6 sec range and beyond.

Local RTTs follow a bi-modal distribution, with one peak at 7ms
and another, larger one at 45 ms. This is consistent with the fact that
most DSL lines useinterleaving[28, 24], which increases delay,
while a smaller number of the DSL lines use the “fast path” feature,
which does not contribute any significant delay.

Remote RTTs exhibit three modes, at 13 ms, 100 ms, and
160 ms, with the latter two somewhat blurred in the plot. Likely
these modes reflect the geographic distribution of remote hosts
(e.g., Europe, US East coast, US West coast).

7.3 Impact of Access Technology
The not infrequent appearance of large local RTTs led us to in-

vestigate their possible cause. Typically, large RTTs reflect large
queuing delays. Indeed, Dischinger et al. [12] found that residen-
tial broadband links can exhibit queuing delays of several seconds
when a DSL line is fully utilized.

Manual inspection of sequence number plots of some connec-
tions with large RTTs (>1000 ms) indeed shows such queues build-
ing up. We therefore checked whether those lines utilized their ac-
cess bandwidth during these events. We found, however, thatthis
is not always the case: while we often see significant traffic on
these DSL lines, they do not necessarily utilize their upstream or
downstream bandwidth fully. A more detailed manual analysis re-
veals other effects, too, such as RTTs within a connection suddenly
jumping by an order of magnitude.

One possible cause could be wireless links in users’ homes,
given the plausibility of a large fraction of broadband users em-
ploying 802.11 wireless to connect their computers to the Inter-
net. In densely populated, urban areas, users often “see” numer-
ous wireless networks, and therefore can experience non-negligible
contention for the medium.

To assess this hypothesis, we used several DSL links
(1x 8000 Kbps and 3x 2000 Kbps downstream) to estimate up-
stream and downstream throughput and queuing delays using active
measurements done with thenettest tool.

Using wired connections, we are able to fully utilize the DSL
link’s bandwidth. When using wireless connections, the achieved
throughput often drops to 400–1000 Kbps. In both cases, we ex-
perience queuing delays of several seconds. However, the reduced
throughput when using wireless access causes the queue to start
building up at lower rates. In addition, while we were unableto
saturate the 8000 Kbps link2 with a wired connection, and there-
fore had low or imperceptible queuing delay, using wirelessthe
queuing delay still rose to several seconds.

These results show that wireless networks can have a significant
impact on the achievable throughput. In particular, 11 Mbpswire-
less cards and wireless connections in areas with many otherwire-
less senders, and/or with poor link quality, face significant perfor-
mance degradation. We verified that wireless connections, in un-
contested environments and with current 54 Mbps wireless devices,
offer the same throughput and queuing delay as wired connections.

7.4 Achieved Throughput
Next, we examine how many lines actually utilize their available

access bandwidth across a substantial period of time. We count the
number of transfered bytes per DSL line across 1 sec bins and then
calculate the throughput per bin. We call a lineactive if it sent at

2Due to a bottleneck in the Internet between the DSL line and the
measurement server
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Figure 12: Achieved throughput of flows with size>50 KB by
application protocol.

least one packet, or received at least 5 KB, in each bin. We then
compare these results to the available access bandwidth foreach
DSL line, determining how many lines exceeded 10% or 50% of
their bandwidth for at least one second during a given 5 min period.

Figure 11 shows that most lines use only a small fraction of their
bandwidth. Less than a quarter of the active lines exceed 50%of
their bandwidth for evenone second over a 5 minutetime period.
However, during the day we observe 50–60% of active lines achiev-
ing at least a 10% bandwidth utilization. These results are consis-
tent with findings from Siekkinen et al. [47].

To gauge whether there is a principle network limitation on ob-
tainable performance, we analyzed the achieved throughputper
unidirectional flow, distinguishing flows by their application-layer
protocol. To do so, we constructed the equivalent of NetFlowdata
from our packet traces, using an inactivity timeout of 5 sec.Fig-
ure 12 shows the distribution of the achieved throughput forthese
flows, given they transfered at least 50 KB. We observe that HTTP
and NNTP achieve throughputs an order of magnitude larger than
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Figure 13: Number of mean parallel flows with size>50 KB
per application protocol and line (in 5 min bins).

those for P2P and unclassified traffic (note the logarithmic scale).
We also find that other DPD-classified traffic, as well as traffic on
well-known ports, achieves throughput similar to that for HTTP
and NNTP. These findings suggest that a portion of unclassified
traffic is likely P2P. For flows with more data (> 500 KB), the dif-
ference in throughput actually increases slightly. Furthermore, we
see that the throughput for all of these larger flows increases as
well.

Some P2P applications open multiple parallel connections in or-
der to download content from several peers at the same time. To
analyze this behavior, we investigated the mean number of paral-
lel flows per application; see Figure 13. The plot confirms that
P2P protocols use more parallel flows than HTTP. However, the
difference is substantially smaller than the difference inachieved
throughput. As such, the upstream capacity of other peers com-
bined with application restrictions effectively throttles P2P trans-
fers. Interestingly, we find that NNTP behaves similar to theP2P
protocols, using a larger number of parallel flows. This is most
likely a result of users using a customized NNTP client for bulk
download, rather than a traditional newsgroup reader.

8. SUMMARY
In this paper we have studied residential broadband Internet traf-

fic using anonymized packet-level traces augmented with DSLses-
sion information. Our data covers more than 20,000 customers
from a major European ISP. Our initial exploration of the datasets
unearthed a number of surprises that alter some of our mentalmod-
els of such traffic.

We started with DSL level characteristics, examining session du-
rations, their termination causes, and the number of concurrent ses-
sions. Session durations are surprisingly short, with a median dura-
tion of only 20–30 minutes, while we would have expected several
hours to days. Our termination cause analysis turned up thatmost
sessions end due to termination from the user end, which we at-
tribute to default router configurations based on former timed con-
tracts. As a consequence, IP addresses are reassigned frequently,
with up to 4% of addresses assigned more than 10 times a day.
This indicates that the use of IP addresses as host identifiers can
prove quite misleading over fairly short time scales.



Next we examined usage of different applications and their im-
pact on overall traffic. We observed that P2P no longer dominates
in terms of bytes. Rather, HTTP once more carries most of the
traffic, by a significant margin (>50%). While we used Bro’s
DPD [13] to identify applications, we also examined the efficacy
we would obtain from a simple, purely port-based approach for ap-
plication classification, finding it works quite well for ourdatasets,
due to the prelevance of HTTP, NNTP, and streaming applications.
It does not work as well for P2P, however.

To understand why HTTP is again the dominant application, we
looked at a number of facets of its usage. We found that Flash
Video, the format used by video portals such asyoutube.com and
news sites, contributes 25% of all HTTP traffic, followed by RAR
archives. The latter are mostly downloaded from Direct Download
providers associated with file-sharing. We did not find a significant
share of HTTP traffic attributable to P2P protocols or application
protocols using HTTP as a transport protocol.

We note that a number of these results agree with those of Erman
et al.’s contemporaneous study [15], suggesting that the trends are
representative for a significant fraction of the Internet.

We analyzed transport protocol characteristics in terms ofTCP
options. We found that window scaling and SACK have become
more popular since Medina et al.’s previous study [34], withSACK
employed by more than 90% of clients. Window scaling is also
often used, but does not in fact result in larger advertised receiver
windows.

We assessed performance and path characteristics of TCP con-
nections, noting that most DSL lines fail to utilize their available
bandwidth. Examining TCP round-trip-times, we found that for
many TCP connections the access bandwidth-delay product ex-
ceeds the advertised window, thus making it impossible for the
connection to saturate the access link. Our RTT analysis also re-
vealed that, surprisingly, the latency from the DSL-connected host
to its first Internet hop dominates the WAN path delay. This dis-
crepancy can however be explained by ADSL’s interleaving mech-
anism. We found that WAN delays are often as little as 13 ms, but
local RTTs not infrequently exceed 1000 ms, a phenomenon that
is likely caused by the use of wireless equipment in the customers
home and ensuing contention on the wireless hop. We also ob-
served that connections from client-server applications,like HTTP
and NNTP, achieve an order of magnitude higher throughput per
flow than P2P connections.

In future work we plan to explore application characteristics and
network capacity issues in more depth, as well as to obtain longi-
tudinal data to perform trend analysis. Furthermore, we plan to in-
vestigate interactive and real-time sensitive traffic suchas VoIP and
gaming. Although these do not yet contribute a significant number
of bytes, these protocols are important for perceived Quality-of-
Service by customers.
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