
Measuring Interactions Between Transport Protocols and
Middleboxes

Alberto Medina, Mark Allman, Sally Floyd
ICSI Center for Internet Research
{medina,mallman,floyd}@icir.org

ABSTRACT
In this paper we explore the current network environment with re-
spect to how the network’s evolution ultimately impacts end-to-end
protocols. The traditional end-to-end assumptions about the Inter-
net are increasingly challenged by the introduction of intermediary
network elements (middleboxes) that intentionally or unintention-
ally prevent or alter the behavior of end-to-end communications.
This paper provides measurement results showing the impactof
the current network environment on a number of traditional and
proposed protocol mechanisms (e.g., Path MTU Discovery, Ex-
plicit Congestion Notification, etc.). We present results of mea-
surements taken using an active measurement framework to study
web servers. We analyze our results to gain further understanding
of the differences between the behavior of the Internet in theory
versus the behavior we observed through measurements. In ad-
dition, these measurements can be used to guide the definition of
more realistic Internet modeling scenarios.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network Proto-
cols; C.2.3 [Computer-Communication Networks]: Network Op-
erations; C.2.5 [Computer-Communication Networks]: Local and
Wide-Area Networks; C.2.6 [Computer-Communication Networks]:
Internetworking

General Terms
Measurement, Design, Reliability, Standardization, Verification

Keywords
TCP, middleboxes, Internet, evolution

1. INTRODUCTION
While the Internet’s architecture, protocols and applications are

constantly evolving, there is oftencompeting evolutionbetween
various network entities. This competing evolution can impact per-
formance and robustness, and even halt communications in some

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IMC’04, October 25–27, 2004, Taormina, Sicily, Italy.
Copyright 2004 ACM 1-58113-821-0/04/0010 ...$5.00.

cases. For instance, [23] shows that when setting up a TCP con-
nection to a web server, attempting to negotiate the use of Explicit
Congestion Notification (ECN) [27] interfered with connection es-
tablishment for over 8% of the web servers tested in 2000. For
such web servers, the client can only establish a TCP connection
by re-attempting the connection without negotiating ECN usage.
The connection failures in the presence of ECN negotiation were
caused by firewalls configured to interpret the attempt to negotiate
ECN as the signature of a port-scanning tool [10]. On the one hand,
these firewalls can be seen as incorrectly associating new function-
ality with one of the first appearances of that new functionality in
an undesirable application. On the other hand, the firewallscan also
be seen as doing their job of blocking unwanted traffic. This exam-
ple shows the fundamental problem of different evolution paths that
can cross to the detriment of smooth traffic flow on the Internet.

In this paper, we investigate the evolution of TCP [26], the In-
ternet’s most heavily used transport protocol, in the context of on-
going changes to the Internet’s basic architecture. In particular, we
study the ways in which so-called “middleboxes” (firewalls,NATs,
proxies, etc.) — which change the Internet’s basicend-to-end prin-
ciple [28] — impact TCP. We seek to elucidate unexpected interac-
tions between layers and ways in which the Internet differs from its
textbook description, including the difficulties various real-world
“gotchas” impose on the evolution of TCP (and end-to-end proto-
cols in general). The measurements presented in this paper also
serve as lessons for efforts that wish to further evolve end-to-end
protocols and the Internet architecture.

In the study presented in this paper, we use active measurements
to assess the capabilities supported by web servers (the primary
data senders in web transactions) and their behavior in the context
of the current Internet architecture on which they communicate.
The remainder of this paper is organized as follows. Section2 de-
scribes related work on measurement studies of transport protocols.
Section 3 describes the tools and methodology we use in our study.
Section 4 explores interactions between middleboxes and transport
protocols. Section 5 discusses additional results. Finally, Section 6
presents our conclusions, and discusses open questions andfuture
work.

2. RELATED WORK
This paper uses and extends the methodology from [23] on the

TCP Behavior Inference Tool (TBIT). TBIT, the measurement tool
used in our work, follows an earlier history of active probing of
TCP. For instance, [8] treats TCP implementations as black boxes,
observing how they react to external stimuli, and studying specific
TCP implementations in order to assess the adherence to the spec-
ification.

There is also a considerable body of work on passive tests of

TCP based on the analysis of packet traces. [24] outlinestcpanaly,
a tool for analyzing a TCP implementation’s behavior by inspecting
sender and receiver packet traces of TCP connections run between
pairs of hosts, while [25] outlines observed packet dynamics based
on tcpanaly’s analysis. Finally, [3] assesses the properties of web
clients using packet traces of TCP connections to a particular web
server.

In addition, there is some research in the literature on the effect
of middleboxes on transport protocol performance (e.g., [4]). We
do not discuss the body of research on general architecturaleval-
uations of middleboxes, or on the effect of middleboxes on DNS,
BGP, and the like. Rather, the study presented in this paper focuses
on interactions between middleboxes and transport protocols.

Finally, there is a large body of literature on active and passive
approaches for estimating end-to-end network path properties using
TCP [24, 6, 11]. In this paper we do not discuss TCP-based tests for
estimating path properties such as loss rates, available orbottleneck
bandwidth and durations of congestion episodes. Also prevalent in
the literature, yet out of scope for the current effort, is the body of
work based on passive measurements of traffic on a particularlink
to determine the breakdown of the traffic in terms of round-trip
times, application layer protocols, transfer sizes, etc.

3. MEASUREMENTS: TOOLS AND DATA
As discussed above, we employ active measurements in this study.

Specifically, we use a measurement tool called TBIT [23], to con-
duct active measurements that probe web servers for their char-
acteristics in the context of the environment on which the com-
munications take place. We note that in some cases, information
gathered via active measurements can be obtained as well viapas-
sive means. However, many of the TBIT tests are not amenable to
straightforward post-facto analysis of packet traces. Forinstance,
tests that involve actively attempting alternative schemes in con-
nection initiation cannot be performed by passive trace analysis
alone. Consider a test for middleboxes that block TCP SYN seg-
ments when the SYNs carry advertisements for ECN. Packet traces
can indicate whether connections attempting to use ECN succeed or
fail. However, determining that the failure of a connectionattempt-
ing to negotiate ECN is due to a middlebox blocking ECN-capable
SYNs takes active insertion of SYNs with and without ECN adver-
tisements.

The measurements gathered for this work are the result of spe-
cific tests implemented in the TBIT framework. Each test is de-
signed to examine a specific aspect of the behavior of the remote
web servers, or of the path to and from the web server. Most of
these tests examine the behavior of TCP implementations on the
web servers. However, the tests are not restricted to TCP (e.g.,
the Path MTU Discovery [22] tests). TBIT establishes a TCP con-
nection with the remote host at the user level. TBIT composes
TCP segments (or segments from another protocol), and uses raw
IP sockets to send them to the remote host. TBIT also sets up a
host firewall to prevent incoming packets from reaching the kernel
of the local machine; a BSD packet filter is used to deliver incom-
ing packets to the TBIT process. TBIT’s user-level connection is
used to control the sending of carefully constructed packets (con-
trol, data, acknowledgment, etc.) as desired from the localhost.
Note that all the TBIT tests are susceptible to network conditions
to some degree. For instance, if an ACK sent by TBIT is lost in
transit to the web server the result of the test could be inconclusive
or even wrongly reported. We have taken test-specific measures to
make each of our tests as robust as possible. In addition, ourlarge
set of web servers (described below) helps to minimize any biases
that bogus tests introduce into our results.

Server name Location Cache size
pb.us.ircache.net Pittsburgh, PA 12867
uc.us.ircache.net Urbana-Champain, IL 18711
bo.us.ircache.net Boulder, CO 42120
sv.us.ircache.net Silicon Valley, CA 28800
sd.us.ircache.net San Diego, CA 19429
pa.us.ircache.net Palo Alto, CA 5511
sj.us.ircache.net MAE-West, San Jose, CA 14447
rtp.us.ircache.net Research Triangle, NC 33009
ny.us.ircache.net New York, NY 22846

Table 1: IRCache servers and locations

The list of target web servers used in our study was gathered
from IRcaches, the NLANR Web Caching project [1]. We used
web cache logs gathered from nine different locations around the
United States. Table 1 shows the cache logs used from February
2004, along with the log sizes, expressed as the number of unique
IP server addresses from each cache. Since the caches are located
within the continental US, most of the cached URLs correspond to
domain names within the US. However, the cache logs also contain
a sizable set of web servers located in the other continents.Of the
84,394 unique IP addresses1 found in the cache logs: 82.6% are
from North America, 10.2% are from Europe, 4.9% are from Asia,
1.1% are from Oceania, 1.0% are from South America and 0.2%
are from Africa.

All the TBIT tests outlined in this paper were conducted between
February and May 2004. The TBIT client was always run from a
machine on the local network at our research laboratory. There
is no local firewall between the machine running TBIT and our
Internet connection.

4. MIDDLEBOXES AND TRANSPORT PRO-
TOCOLS

The increased prevalence of middleboxes puts into questionthe
general applicability of the end-to-end principle. Middleboxes in-
troduce dependencies and hidden points of failure, and can affect
the performance of transport protocols and applications inthe In-
ternet in unexpected ways. Middleboxes that divert an IP packet
from its intended destination, or modify its contents, are generally
considered fundamentally different from those that correctly termi-
nate a transport connection and carry out their manipulations at the
application layer. Such diversions or modifications violate the basic
architectural assumption that packets flow from source to destina-
tion essentially unchanged (except for TTL and QoS-relatedfields).
The effects of such changes on transport and application protocols
are unpredictable in the general case. In this section we explore the
ways that middleboxes might interfere in unexpected ways with
transport protocol performance.

4.1 ECN-capable Connections
Explicit Congestion Notification (ECN) [27] is a mechanism that

allows routers to mark packets to indicate congestion, instead of
dropping them. After the initial deployment of ECN-capableTCP
implementations, there were reports of middleboxes (in particular,
firewalls and load-balancers) that blocked TCP SYN packets at-
tempting to negotiate ECN-capability, either by dropping the TCP
1We note that the list of servers could be biased by a single machine
having multiple unique IP addresses – which would tend to skew
the results. However, due to the size of the server list, we believe
that such artifacts, while surely present, do not highly skew the
overall results.

Year: 2000 2004
ECN Status Number % Number %
Number of Servers 24030 100% 84394 100%
I. Classified Servers 21879 91% 80498 95.4%
I.A. Not ECN-capable 21602 90% 78733 93%
I.B. ECN-Capable 277 1.1% 1765 2.1%
I.B.1. no ECN-Echo 255 1.1% 1302 1.5%
I.B.2. ECN-Echo 22 0.1% 463 0.5%
I.C. Bad SYN/ACK 0 183 0.2%
II. Errors 2151 9% 3896 4.6%
II.A. No Connection 2151 9% 3194 3.8%
II.A.1. only with ECN 2151 9% 814 1%
II.A.2. without ECN 0 2380 2.8%
II.B. HTTP Error – 336 0.4%
II.C. No Data Received – 54 0%
II.D. Others – 312 0.4%

Table 2: ECN Test Results

SYN packet, or by responding with a TCP Reset [10]. [23] in-
cludes test results showing the fraction of web servers thatwere
ECN-capable and the fraction of paths to web servers that included
middleboxes blocking TCP SYN segments attempting to negotiate
ECN-capability. The TBIT test for ECN is described in [23].

Table 2 shows the results of the ECN test for 84,394 web servers.
Only a small fraction of servers are ECN-Capable – this percentage
has increased from1.1% of the web servers tested in 2000 to2.1%
in 2004. After a web server has successfully negotiated ECN we
send a data segment marked “Congestion Experienced (CE)” and
record whether the mark is reflected back to the TBIT client via
the ECN-Echo in the ACK packet. The results are given on lines
I.B.1 and I.B.2 of the table. In roughly three-quarters of cases when
ECN is negotiated, a congestion indication is not returned to the
client. This could be caused by a bug in the web server’s TCP
implementation or a middlebox that is clearing the congestion mark
as the segment traverses the network. Finally, we also observe a
small number of web servers send a malformed SYN/ACK packet,
with both the ECN-Echo and Congestion Window Reduced (CWR)
bits set in the SYN/ACK packet (line I.C of the table).

For3194 of the web servers, no TCP connection was established.
For our TBIT test, if the initial SYN packet is dropped, TBIT re-
sends the same SYN packet – TBIT does not follow the advice in
RFC 3168 of sending a new SYN packet that does not attempt to
negotiate ECN. Similarly, if TBIT receives a TCP Reset in response
to a SYN packet, TBIT drops the connection, instead of sending a
subsequent SYN packet that does not attempt to negotiate ECN-
capability.

In order to assess how many of these connection failures are
caused by the attempt of ECN negotiation, we run two back-to-
back TBIT tests to each server. The first test does not attemptto
negotiate ECN. After a two-second idle period, another connec-
tion is attempted using ECN. We observe that 814 connections(1%
of the web servers, or25% of the connection failures) are appar-
ently refused because of trying to negotiate ECN, since the connec-
tion was established successfully when no ECN negotiation was
attempted. Table 2 indicates that the fraction of web servers with
ECN-blocking middleboxes on their path has decreased substan-
tially since September 2000 – from 9% in 2000 to 1% in 2004.

We further explored the behavior of ECN-capable servers by
recording the ECT codepoints in the data packets received byTBIT.
Table 3 shows the number of servers from which the different code-
points were observed. TBIT received data packets with the ECT 00

% of
ECN fields in data packets Number total
ECN-capable servers 1765 100%
Received packets w/ ECT 00 (Not-ECT) 758 42%
Received packets w/ ECT 01 (ECT(1)) 0 0%
Received packets w/ ECT 10 (ECT(0)) 1167 66%
Received packets w/ ECT 11 (CE) 0 0%
Received packets w/ ECT 00 and ECT 10 174 10%

Table 3: Codepoints in data packets from ECN-Capable
Servers

codepoint from about 42% of the ECN-capable servers. The ECN
specification defines two ECT code points that may be used by a
sender to indicate its ECN capabilities in IP packets. The speci-
fication further indicates that protocols that require onlyone such
a codepointshoulduseECT (1) = 10. We observe that ECN-
capable servers do use ECT(1) and found no server made use of the
ECT (0) = 01 codepoint. We further observe that no router be-
tween our TBIT client and the ECN-capable servers reported Con-
gestion Experienced (CE) in any segment. Finally, TBIT received
both data segments withECT = 00 andECT = 10 in the same
connection from about 10% of the ECN-capable servers. This be-
havior may indicate that the ECT code point is being erased bya
network element (e.g. router or middlebox) along the path between
the ECN-capable server and the client.

4.2 Path MTU Discovery
TCP performance is generally proportional to the segment size

employed [16]. In addition, [16] argues that packet fragmentation
can cause poor performance. As a compromise, TCP can use Path
MTU Discovery (PMTUD) [22, 20] to determine the largest seg-
ment that can be transmitted across a given network path without
being fragmented. Initially, the data sender transmits a segment
with the IP “Don’t Fragment” (DF) bit set and whose size is based
on the MTU of the local network. Routers along the path that can-
not forward the segment without first fragmenting it (which is not
allowed because DF is set) will return an ICMP message to the
sender noting that the segment cannot be forwarded because it is
too large. The sender then reduces its segment size and retransmits.
Problems with PMTUD are documented in [17], which notes that
many routers fail to send ICMP messages and many firewalls and
other middleboxes are often configured to suppress all ICMP mes-
sages, resulting in PMTUD failure. If the data sender continues to
retransmit large packets with the DF bit set, and fails to receive the
ICMP messages indicating that the large packets are being dropped
along the path, the packets are said to be disappearing into aPM-
TUD black hole. We implemented a PMTUD test in TBIT to assess
the prevalence of web servers using PMTUD, and the success or
failure of PMTUD for these web servers. The test is as follows:

1. TBIT is configured with avirtual link MTU, MTUv. In our
tests, we setMTUv to 256 bytes.

2. TBIT opens a connection to the web server using a SYN seg-
ment that contains an MSS Option of 1460 bytes (which is
based on the actual MTU of the network to which the TBIT
client is attached).

3. The TCP implementation at the server accepts the connec-
tion and sends MSS-sized segments, resulting in transmitted
packets of MSS + 40 bytes. If the data packets from the
server do not have the DF bit set, then TBIT classifies the

% of
PMTUD Status Number total
Total Number of Servers 81776 100%
I. Classified Servers 71737 88%
I.A. PMTUD not-enabled 24196 30%
I.B. Proper PMTUD 33384 41%
I.C. PMTUD Failed 14157 17%

II. Errors 9956 12%
II.A. Early Reset 545 0.6%
II.B. No Connection 2101 2.5%
II.C. HTTP Errors 2843 3.4%
II.D. Others 4467 5.5%

Table 4: PMTUD Test Results

server as not attempting to use PMTUD. If TBIT receives a
packet with the DF bit set that is larger thanMTUv TBIT re-
jects the packet, and generates an ICMP message to be sent
back to the server.

4. If the server is capable of receiving and processing such ICMP
packets, it will reduce the MSS to the value specified in the
MTU field of the ICMP packet, minus 40 bytes for packet
headers, and resume the TCP connection. In this case, TBIT
accepts the proper-sized packets and the communication com-
pletes.

5. If the server is not capable of receiving and processing ICMP
packets it will retransmit the lost data using the same packet
size. Since TBIT rejects packets that are larger thanMTUv

the communication will eventually time out and terminate
and TBIT classifies the server/path as failing to properly em-
ploy PMTUD.

Table 4 shows that PMTUD is used successfully for slightly less
than half of the servers on our list. For 31% of the servers on our
list, the server did not attempt Path MTU Discovery. For 18% of
the servers on our list, Path MTU Discovery failed, presumably
because of middleboxes that block ICMP packets on the path tothe
web server.

Alternate methods for determining the path MTU are being con-
sidered in the Path MTU Discovery Working Group in the IETF,
based on the sender starting with small packets and progressively
increasing the segment size. If the sender does not receive an ACK
packet for the larger packet, it changes back to smaller packets.

In a similar strategy, calledblack-hole detection, if a packet with
the DF bit set is retransmitted a number of times without being
acknowledged, then the MSS will be set to 536 bytes [2]. We
performed a variant of the PMTUD test in which TBIT does not
send the ICMP packets, to see if any server reduces the size ofthe
packets sent simply because it didn’t receive an ACK for the larger
packet. We didn’t find any servers performing black-hole detection.

Since a non-trivial number of network elements discard well-
known ICMP packets the results of our tests do not offer hope for
protocol designers proposing to use new ICMP messages to signal
various network path properties to end systems (e.g., for explicit
corruption notification, handoff or outage notification, etc.).

4.3 IP Options
IP packets may contain options to encode additional information

at the end of IP headers. A number of concerns have been raised
regarding the use of IP options. One concern is that the use ofIP
options may significantly increase the overhead in routers,because

in some cases packets with IP options are processed on theslow
path of the forwarding engine. A second concern is that receiv-
ing IP packets with malformed IP options may trigger alignment
problems on many architectures and OS versions. Solutions to this
problem range from patching the OS, to blocking access to packets
using unknown IP options or using IP options in general. A third
concern is that of possible denial of service attacks that may be
caused by packets with invalid IP options going to network routers.
These concerns, together with the fact that the generation and pro-
cessing of IP options is nonmandatory at both the routers andthe
end hosts, have led routers, hosts, and middleboxes to simply drop
packets with unknown IP options, or even to drop packets withstan-
dard and properly formed options. This is of concern to designers
of transport protocols because of proposals for new transport mech-
anisms that would involve using new IP options in transport proto-
cols (e.g., [15, 9]).

TBIT’s IP options test considers TCP connections with three
types of IP options in the TCP SYN packet, theIP Record Route
Option, the IP Timestamp Option, and a new option calledIP Op-
tion X, which is an undefined option and represents any new IP
option that might be standardized in the future. We experimented
with two variants of Option X, both of size 4. The first variant
uses a copy bit of zero, class bits set to zero and 25 as the option
number. The second variant of IP Option X sets the class bits to a
reserved value, and uses an option number of 31. The results for
experiments with both Option X variants are similar.

No IP Options Record Route TimeStamp Option X
0

20

40

60

80

100

IP Option Test type (SYN)

%
 o

f
C

o
n

n
ec

ti
o

n
s

No Connection
Option Ignored
Success

0.2%
0%

98%

34%

21%

45% 43%

20%

36%

70%

30%

Figure 1: Handling IP Options in TCP SYN packets.

Figure 1 shows the TCP connection behavior with different IP
options in the associated SYN packets. For each attempted connec-
tion there are three possible outcomes: no connection established,
connection established with the IP option ignored, or IP option ac-
cepted. As Figure 1 shows, in many cases no connection was estab-
lished when the Record Route Option or the Timestamp Option was
included in the SYN packet. When IP Option X is included in the
SYN segment, the connection was not established to over 70% of
the web servers tested. This does not bode well for the deployment
of new IP options in the Internet.

Most IP options are usually expressed in the first packet (e.g., the
TCP SYN packet) in the communication between end hosts. We
performed an additional test to assess the behavior when IP option
X is placed in data packets in the middle of an established con-
nection. For each established connection TBIT offers two classi-
fications: “success” or “broken connection”. The former indicates
that the server successfully delivered its data regardlessof the IP
option insertion. The latter classification indicates thatthe inser-
tion of the IP option forced the connection to be idle for at least
12 seconds (which we then define as “broken”). We performed two
sets of tests, with and without insertion of option X. The connec-
tion failure rate across both sets of tests is roughly 3%. Thetests
without IP options show nearly 6% of the connections are “broken”

for some reason. Meanwhile, when inserting IP option X into the
middle of the transfer, 44% of the connections are broken, indi-
cating a significant issue when attempting to utilize IP options in
mid-connection.

4.4 TCP Options
Next we turn our attention to potential problems when TCP op-

tions are employed. TCP options are more routinely used than
IP options. For instance, TCP uses the timestamp option [14]to
(among other things) take round-trip time measurements more fre-
quently than once per round-trip time, for the Protection Against
Wrapped Sequences [14] algorithm and for detecting spurious time-
outs [18].

However, middleboxes along a path can interfere with the use
of TCP options, in an attempt to thwart attackers trying to finger-
print hosts. Network mapping tools such as NMAP (Network Map-
per) use information from TCP options to gather informationabout
hosts; this is calledfingerprinting. Countermeasures to fingerprint-
ing, sometimes calledfingerprint scrubbers[29], attempt to block
fingerprinting by inspecting and minimally manipulating the traffic
stream. One of the strategies used by fingerprint scrubbers is to re-
order TCP options in the TCP header; any unknown options may
be included after all other options. In order to avoid being finger-
printed, some sites may reject connections negotiating specific or
unknown options, or drop packets encountered in the middle of the
stream that contain those options.

The TCP options test first assesses the behavior of the web server
when the TCP Timestamp option is included in the SYN packet. To
test for performance with unknown TCP options, we also initiate
connections using an unallocated option number,TCP OptionY ,
in the SYN packet.

Our tests indicate a connection failure rate of about 0.2% inall
scenarios. Option Y is ignored in the remainder of the connections.
The timestamp option is ignored by roughly 15% of the servers(but
the connection is otherwise fine). The reason the servers ignore the
timestamp option is not visible to TBIT, but could be either amid-
dlebox stripping or mangling the option or the web server notsup-
porting timestamps. Next we assess the use of options in the middle
of a TCP connection, by establishing a connection without TCP op-
tions and then using the Timestamp option or Option Y on a data
packet in the middle of the connection. The connection failure rate
for both options is roughly 3% – indicating that sending unknown
options midstream is not problematic for most web servers.

5. ADDITIONAL RESULTS
In addition to the measurements presented in this paper we exe-

cuted additional tests to detect and quantify the presence of various
algorithms and parameters in the web server’s TCP implementa-
tions [21]. In this section we summarize several of the results we
have obtained in the hopes of providing researchers with guidance
on constructing models for their simulation and emulation studies.
The tests that produce these results are similar to the testsoutlined
in [23].

• When not using selective acknowledgments (SACK) [19] (e.g.,
because of non-SACK-capable receivers), roughly 75% of
the web servers we could classify used NewReno loss recov-
ery [13]. This suggests that studies involving only the Reno
TCP variant should be discouraged.

• Nearly 70% of web servers advertise themselves as SACK
capable. Of the servers that advertise SACK support, over
95% make some use of the SACK information sent by the
web client.

• Of the web servers that advertise SACK support, more than
95% correctly generate SACK blocks when data sent by the
client is missing.

• RFC 3390 [5] allows a TCP to use an initial congestion win-
dow of 1–4 segments, depending on their size. We found
that 42% of the web servers in our dataset used an initial
congestion window of 1 segment, while 54% used an initial
window of 2 segments. Less than 3% of the web servers used
3 or 4 segment initial congestion windows. We noted initial
congestion window values as large as 129 segments (in small
proportions of the servers).

In addition to the above results we have additional results regard-
ing TCP’s use of Limited Transmit, Appropriate Byte Counting,
Congestion Window Validation, Window Scale Option, Minimum
RTO, Minimum MSS, and the Deployment of D-SACK (Duplicate
SACK). Also, we have measurement strategies for detecting mid-
dleboxes that perform TTL-rewriting, and for detecting theeffects
of reordering on transport protocols. Finally, another component of
our work uses packet traces from near a set of web servers to as-
sess the client-side deployment of various end-host algorithms and
protocol mechanisms.

6. CONCLUSIONS AND FUTURE WORK
The contribution of the work presented in this paper is to il-

lustrate the ways that the performance of protocol mechanisms in
the Internet differ from theory. The insights gathered fromour
measurements involving the interactions between TCP and middle-
boxes along the network path are summarized in Table 5.

Additionally, there are a wealth of important TCP behaviorsthat
we have not examined in our tests, and new TCP mechanisms are
continually being proposed, standardized and deployed (e.g., High-
Speed TCP [12]). Assessing their deployment, characteristics and
behaviors in the context of the evolving Internet architecture are
useful future work.

Another class of extensions to this work is exploring the behavior
of TCP in alternate applications (e.g., peer-to-peer systems, email,
web caching, etc.).

An additional interesting area for future investigation isusing
TBIT-like tools for performanceevaluation. For instance, a perfor-
mance comparison of servers using various initial congestion win-
dow values might be useful or servers with and without SACK-
based loss recovery. Developing techniques for conductingthis
kind of performance comparison in a solid and meaningful way
(and detecting when such a comparison is not meaningful) is arich
area for future investigation. Furthermore, performing tests from
multiple vantage points would be an interesting extension for de-
tecting differences in behavior among multiple paths whichmay
point to middleboxes in some paths.

As new transport protocols such as SCTP and DCCP begin to
be deployed, another area for future work will be to construct tools
to monitor the behavior, deployment and characteristics ofthese
protocols in the Internet.

While we examined some ways that middleboxes interfere with
TCP communications, a key open question is that of assessingways
that middleboxes affect theperformanceof transport protocols or of
applications. One middlebox that clearly affects TCP performance
is that of Performance Enhancing Proxies (PEPs) [7] that break
single TCP connections into two connections potentially changing
end-to-end behavior. While [4] presents some results in this gen-
eral area, additional active tests may be useful to investigate this
further.

Behavior Section Possible Interactions with Routers or Middleboxes
ECN 4.1 Advertising ECN prevents connection setup for a small (and diminishing) set of hosts.
PMTUD 4.2 Less than half of the web servers successfully complete PathMTU Discovery.

PMTUD is attempted but fails for one-sixth of the web servers.
IP Options 4.3 For roughly one-third of the web servers, no connection is established when the client includes

an IP Record Route or Timestamp option in the TCP SYN packet.
For most servers, no connection is established when the client includes an unknown IP Option.

TCP Options 4.4 The use of TCP options does not interfere with connection establishment. Few problems
were detected with known and unknown TCP options included indata packets in mid-stream.

Table 5: Information on interactions between transport protocols and routers or middleboxes.

Finally, a completely different kind of test that could benefit from
the active probing approach outlined in this paper would be one
to detect the presence or absence of Active Queue Management
mechanisms at the congested link along a path. To some extent, this
can be done with passive tests, by looking at the pattern of round-
trip times before and after a packet drop. However, active tests may
be much more powerful, by allowing the researcher to send short
runs of back-to-back packets, as well as potentially problematic, in
attempting to induce transient congestion in the network.

Acknowledgments
Orion Hodson assisted with our TBIT measurements. Sourabh
Ladha and the anonymous reviewers gave us detailed and useful
feedback.

This material is based in part upon work supported by the Na-
tional Science Foundation under Grant Nos. 0205519 and 0230921.
Any opinions, findings, and conclusions or recommendationsex-
pressed in this material are those of the author(s) and do notneces-
sarily reflect the views of the National Science Foundation.

7. REFERENCES
[1] NLANR Web Caching project. http://www.ircache.net/.
[2] PMTU Black Hole Detection Algorithm Change for

Windows NT 3.51. Microsoft Knowledge Base Artible -
136970.

[3] Mark Allman. A Web Server’s View of the Transport Layer.
Computer Communications Review, 30(5):10–20, October
2000.

[4] Mark Allman. On the Performance of Middleboxes. InACM
SIGCOMM/USENIX Internet Measurement Conference,
pages 307–312, October 2003.

[5] Mark Allman, Sally Floyd, and Craig Partridge. Increasing
TCP’s Initial Window, October 2002. RFC 3390.

[6] Mark Allman and Vern Paxson. On Estimating End-to-End
Network Path Properties. pages 229–240, 1999.

[7] John Border, Markku Kojo, Jim Griner, Gabriel Montenegro,
and Zach Shelby. Performance Enhancing Proxies Intended
to Mitigate Link-Related Degradations, June 2001. RFC
3135.

[8] Douglas E. Comer and John C. Lin. Probing TCP
Implementations. InUSENIX Summer 1994 Conference,
1994.

[9] Wesley Eddy, Shawn Ostermann, and Mark Allman. New
Techniques for Making Transport Protocols Robust to
Corruption-Based Loss. January 2004. Under submission.

[10] S. Floyd. Inappropriate TCP Resets Considered Harmful,
2002. RFC 3360.

[11] Sally Floyd. Tools for Bandwidth Estimation. Web page,
URL ‘http://www.icir.org/models/tools.html’.

[12] Sally Floyd. HighSpeed TCP for Large Congestion
Windows, December 2003. RFC 3649.

[13] Sally Floyd, Tom Henderson, and Andrei Gurtov. The
NewReno Modification to TCP’s Fast Recovery Algorithm,
April 2004. RFC 3782.

[14] V. Jacobson, R. Barden, and D. Borman. TCP Extensions for
High Performance, May 1992. RFC 1323.

[15] Amit Jain and Sally Floyd. Quick-Start for TCP and IP,
2002. Internet-Draft draft-amit-quick-start-02.txt, expired,
URL: http://www.icir.org/floyd/papers/draft-amit-quick-
start-02.txt.

[16] Christopher Kent and Jeffrey Mogul. Fragmentation
Considered Harmful. InACM SIGCOMM, October 1987.

[17] Kevin Lahey. TCP Problems with Path MTU Discovery,
September 2000. RFC 2923.

[18] R. Ludwig and M. Meyer. The Eifel Detection Algorithm for
TCP, 2003. RFC 3522.

[19] Matt Mathis, Jamshid Mahdavi, Sally Floyd, and Allyn
Romanow. TCP Selective Acknowledgement Options,
October 1996. RFC 2018.

[20] Jack McCann, Steve Deering, and Jeffrey C. Mogul. Path
MTU Discovery for IP version 6, August 1996. RFC 1981.

[21] Alberto Medina, Mark Allman, and Sally Floyd. Measuring
the Evolution of Transport Protocols in the Internet, 2004.
URL http://www.icir.org/tbit/.

[22] Jeffrey C. Mogul and Steve Deering. Path MTU Discovery,
November 1990. RFC 1191.

[23] Jitendra Padhye and Sally Floyd. Identifying the TCP
Behavior of Web Servers. InACM SIGCOMM, August 2001.

[24] Vern Paxson. Automated Packet Trace Analysis of TCP
Implementations. InACM SIGCOMM, September 1997.

[25] Vern Paxson. End-to-End Internet Packet Dynamics. InACM
SIGCOMM, September 1997.

[26] Jon Postel. Transmission Control Protocol, September1981.
RFC 793.

[27] K.K. Ramakrishnan, Sally Floyd, and David Black. The
Addition of Explicit Congestion Notification (ECN) to IP,
September 2001. RFC 3168.

[28] J.H. Saltzer, D.P. Reed, and David Clark. End-to-End
Arguments in System Design. InProceedings of the Second
International Conference on Distributed Computing Systems,
pages 509–512, August 1981.

[29] Matthew Smart, G. Robert Malan, and Farnam Jahanian.
Defeating TCP/IP Stack Fingerprinting. In9th USENIX
Security Symposium, pages 229–240, 2000.

