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Abstract

In this paper we consider the potential for congestion col-
lapse in a range of network scenarios. In particular, we are
interested in the effect of the topology, the scheduling disci-
pline (FIFO or FQ scheduling), the level of statistical multi-
plexing, the traffic characteristics, and other factors. Wecon-
sider topologies more complex than a single congested link,
or a single string of congested links. This paper first shows
that it is possible to have high equilibrium loss rates with
rational greedy senders sharing a FIFO link or with greedy
senders sharing an FQ link with bursty cross-traffic. We then
consider specific topologies with a range of senders to cal-
culate steady-state packet loss rates and derive the goodput
of the congested links. In particular, we find some scenar-
ios where goodput is higher with FQ scheduling, and other
scenarios where goodput is higher with FIFO scheduling.

1 Introduction

Previous work on congestion collapse has looked at simple
topologies with “dumb” sources [2].1 Our goal is to ex-
plore how more complex and realistic congestion collapse
scenarios could arise, and to explore the effect of topologies,
scheduling mechanisms, and other parameters on this con-
gestion collapse.

End-to-end congestion control is required not only to help
the end user, but also to prevent congestion collapse in the
network. Without end-to-end congestion control, links could
be busy transmitting packets that will only be dropped later
downstream, thereby wasting scarce bandwidth that could
have been used productively. For a given link, let adead
packet be a packet that ends up being dropped downstream,
before reaching its intended receiver. Thedead packet ra-
tio for a link is then the fraction of the link bandwidth con-
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Science Foundation under Grant No. 0205519. Any opinions, findings, and
conclusions or recommendations expressed in this materialare those of the
author(s) and do not necessarily reflect the views of the National Science
Foundation.

1We define a “dumb” source as any source that does not modify itssend-
ing rate as a function of the packet drop rate along the path.

sisting of dead packets. This paper explores how the dead
packet ratio on busy links can be affected by factors such as
the topology; the scheduling discipline; the number of con-
current flows; the utility function being optimized by greedy
flows; the unpredictability of available per-flow bandwidth;
and other factors.

There are other types of packets that are not dropped
downstream, but that do not contribute to the overall good-
put of the flow or of the network. These include duplicate
packets; dummy packets that carry no information of inter-
est to the receiver (e.g. DDoS, junk mail, etc.); fragments of
packets where some other fragment has been dropped in the
network; etc. We do not include any of these in our definition
of dead packets, and we do not consider any of these other
forms of unproductive packets in this paper. Thus, in an envi-
ronment where no packets are ever dropped, the dead packet
ratio as defined in this paper would be zero. Similarly, given
a definition of ‘congested links’ that includes all links that
drop packets, then the dead packet ratio on congested links
would be zero in an environment where each flow traversed
at most one congested link.2

The approach taken here consist of two separate parts.
The first part, described in Section 1.1, consists of exploring
simple scenarios that result in high steady-state packet drop
rates on a single congested link. We pay particular atten-
tion to scenarios with greedy flows, where sources are free to
change their sending rate to optimize their own utility func-
tion. The second part of the paper, described in Section 1.2,
addresses the sometimes subtle relationship between high
packet drop rates, high dead packet ratios on congested links,
and the loss of aggregate goodput.

1.1 Packet drop rates

In the first part of the paper we explore a range of scenarios
that can result in high steady-state packet drop rates. It is
well-known that dumb senders can result in high packet drop
rates, so we don’t explore this case further.

2The dead packet ratio on uncongested links would not necessarily be
zero, but since these links were uncongested, these dead packets would not
represent a waste of scarce bandwidth, and would not be a concern.
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In Section 3 we explore high packet drop rates arising
from greedy senders optimizing their own utility functions
against a cost incurred due to a lost packet. For scenarios
with FIFO scheduling and many greedy flows competing on
a single congested link, we consider a locally stable state,
where no flow has an incentive to change its sending rate,
and derive the equilibrium packet drop rate in this stable
state. The equilibrium packet drop rate, of course, depends
directly on the utility functions used by the greedy flows. For
these scenarios the use of FQ scheduling would be sufficient
to ensure a drop rate of zero with greedy senders.

In Section 4 we consider scenarios with an unpredictable
available bandwidth, where greedy senders have an incentive
to maintain a high steady-state packet drop rate even with
FQ3 scheduling. So far, we have only considered flows with
concave utility functions, but future work could also consider
non-concave utility functions.

1.2 Congestion collapse and the dead packet
ratio

In the second part of the paper we show that in an environ-
ment with multiple congested links, high steady-state packet
drop rates can result in degraded overall goodput. That is,
we explore the relationship between high steady-state packet
drop rates and the dead packet ratio for congested links in the
network. In particular, we explore the effect of the topology
and of scheduling mechanisms on the dead packet ratio.

Section 5 considers the dead packet ratio in a scenario
with dumb CBR sources on a cyclic topology with FIFO
scheduling. This illustrates that the dead packet ratio on con-
gested links could be high in an environment of small fixed-
rate flows, such as telephony traffic, if the demand is suffi-
ciently large. One could argue that long-term provisioning
will be sufficient to avoid sustained overload in the steady-
state. Even if this is true, it is desirable to avoid high dead-
packet ratios that could occur in atypical periods of high con-
gestion, such as the two hours after an earthquake, when net-
work bandwidth can be particularly precious. Or more ex-
plicitly, it is precisely when demand is unusually high that
one would particularly like to avoid high dead packet ratios
on congested links.

Section 6 considers greedy sources in a cyclic topology,
with a range of utility functions. In this perfectly symmetric
environment, the use of FQ scheduling would be sufficient to
reduce the dead packet ratio on the congested links to zero.
An open question is to explore how the unpredictability of
available bandwidth would influence the dead packet ratio in
this case, with both FIFO and FQ scheduling.

In contrast to the cyclic topology, where FQ scheduling
is sufficient to prevent a high dead packet ratio on congested

3In this paper we concentrate on FQ (Fair Queuing) scheduling, but it is
hoped that the results would also apply to any packet scheduling algorithm
that results in a max-min bandwidth allocation.

links in the steady-state case, Sections 7 and 8 consider “rail-
road” topologies. In these scenarios, with dumb senders, the
dead packet ratio is sometimes greater with FIFO scheduling
and other times is greater with FQ scheduling, depending on
the details of the topology.

It has been shown elsewhere that FQ scheduling mech-
anisms aren’t sufficient to prevent congestion collapse [2].
However, the question of when FQ scheduling would signif-
icantly decrease the danger of congestion collapse, and when
it would not, remains unanswered, particularly for a range of
topologies and scenarios more realistic than the ones studied
so far. One goal would be to characterize how the schedul-
ing mechanism affects the dead packet ratios on congested
links for a wide range of topologies and traffic scenarios. A
specific open question is whether there are scenarios with
congestion collapse when there are greedy senders, a pre-
dictable, steady-state available bandwidth as a result of long-
lived flows, and FQ scheduling.

1.3 Building in robustness against congestion
collapse

A general theme of this work is to explore network scenar-
ios with some form of tragedy of the commons [3], where
users optimizing their own individual utility functions can
lead away from optimizing the common good, and to con-
sider how the network can build in robustness in these cases.
To prevent the tragedy of the commons that can result from
high dead packet ratios on congested links, it would gener-
ally suffice for end users to agree not to maintain high send-
ing rates in the face of high steady-state packet drop rates.

It is generally agreed that routers need mechanisms to drop
packets from flows that persist in maintaining high sending
rates in the face of high packet drop rates; these mechanism
can provide a useful deterrent to misbehaving flows. How-
ever, local dropping mechanisms at routers to control anti-
social flows would not be sufficient to prevent congestion
collapse. In order to prevent congestion collapse when faced
with users that maintain high sending rates in the face of high
packet drop rates, congested routers need a mechanism to
reduce their own dead packet ratios. To achieve this pack-
ets which are likely to be dropped downstream should be
dropped in preference to those that would reach their desti-
nation. However, this would require a high degree of coordi-
nation between congested routers, and this does not appear
to be a realistic goal for datagram networks in the general
case. (In extreme cases, such as large-scale DDoS attacks,
there may be few other alternatives.)

Instead of attempting to build in robustness against con-
gestion collapse by introducing router mechanisms to reduce
dead packet ratios in the presence of high packet drop rates,
it could be argued that router mechanisms should deter high
packet drop rates in the first place. One goal of this work is
to explore the kinds of scenarios, traffic mixes, transport pro-
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tocols, and utility functions that could result in high steady-
state packet drop rates.

A second goal of this work is to begin to understand the
effect of topologies, scheduling mechanisms, and the like
on the dead packet ratio, given a possibly-transient scenario
with high packet drop rates. This can help us to understand
if some scenarios are naturally more resistant to congestion
collapse than others. (As a trivial example, scenarios where
all paths have at most one congested link are naturally im-
mune to the congestion collapse that comes from a high dead
packet ratio on congested links.) This paper is a first step to-
wards the goal of understanding the susceptibility of differ-
ent topologies, scheduling mechanisms, and the like to con-
gestion collapse.

2 Greedy source model

Let xr be the sending rate of sourcer, in packets per sec-
ond, and letpr be the end-to-end drop rate experienced by
that source. There are then three possible modelling assump-
tions:

(a) Independent packet drop rate and sending rates:
∂pr

∂xr
= 0 and ∂xi

∂xj
= 0 for all i 6= j.

(b) Independent sending rates:
No constraints on∂pr

∂xr
but ∂xi

∂xj
= 0 for all i 6= j.

(c) No independence assumptions:
No constraints on∂pr

∂xr
or ∂xi

∂xj
.

These three possible assumptions are ordered in sophisti-
cation and can be intuitively considered as the following. For
assumption (a) of an independent packet drop rate and inde-
pendent sending rates, the source approximates that its own
sending rate doesn’t affect either its own packet drop rate or
the sending rate of other flows. This assumption could be
appropriate for a large number of small flows sending in a
FIFO environment.

For assumption (b) of independent sending rates, the
source assumes that its sending rate does affect its own
packet drop rate, but that it doesn’t affect the sending rates of
other flows. This assumption could be appropriate for many
scenarios in a FQ environment, or for a large flow in a FIFO
environment competing against CBR flows.

For the most general assumption, assumption (c) of no in-
dependence, the source assumes that its sending rate could
affect its own packet drop rate as well as the sending rates
of other flows. This would be the assumption in a game-
theoretic model, where a source can try to make actions tak-
ing into account what happens to the drop rate and the re-
sponse of other sources to its own actions.

2.1 Greedy senders with general utility func-
tions

Let R be the set of all flows, and letpr(x) be the end-to-end
drop rate for flowr. The costCr and the packet drop rate
pr for a flow are both functions of the sending ratesx of all
of the flows. One might think of the costCr as a function
of the packet drop ratepr, which is in turn a function of
the sending ratesx, but for simplicity we will expressCr

directly in terms ofx. The cost functionCr can be thought
of as expressing the cost of packet drops to the flow, apart
from their effect on the received rate. This cost could be
caused by the need to retransmit packets or need for forward
error correction.

We assume that each greedy senderr is trying to optimize
its utility functionU(y), whereU(y) is a concave function of
the received ratey, given that the senderr has a generalized
cost function ofCr(x). The senderr attempts to solve the
following optimization for the sending ratexr:

maximize U (xr (1 − pr(x))) − Cr(x)
subject to xr ≥ 0 for r ∈ R.

Differentiating with respect toxr gives the partial derivative

U ′ (xr (1 − pr))

(

(1 − pr) − xr
∂pr

∂xr

)

−
∂Cr

∂xr
. (1)

We assume a FIFO environment, and define an equilibrium
point to be that at which no sender has an incentive to alter
its rate.

Equating the partial derivative in Equation (1) to zero for
each flowr shows that an equilibrium point will have rates
xr such that

U ′ (xr (1 − pr)) =
∂Cr

∂xr

1

1 − pr − xr
∂pr

∂xr

. (2)

Notice that solving such an equation can be difficult for the
general case, with the functionspr(x) andCr(x) being de-
termined by the queuing disciplines and network routes.

2.2 Packet drop rates with TCP

It will be useful to compare the effects of greedy users
against TCP users which are a particular class of greedy
senders. The TCP response function which models a sources
sending rate,S in packets per second, is given by [7]:

S =
1

T
√

2p
3 + tRTO

(

3
√

3p
8

)

p(1 + 32p2)

(3)

wherep is the drop rate,T is the round trip time, andtRTO

is the round trip timeout value.
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3 Packet drop rates with a single re-
source

In this section we determine the equilibrium drop ratepe in
an environment with greedy senders sharing a single FIFO
bottleneck link, assuming a linear cost functionCr(x) =
αxrpr. Section 4 discusses the drop rate with FQ, for this
and other environments.

We assume that all connections pass through a single FIFO
bottleneck link of bandwidthB in packets per second. In this
case

pr =

{

0 if
∑

i∈R xi ≤ B;
1 − B�

i∈R xi
if
∑

i∈R xi > B.

For tractability, we assume independent sending rates; that
is, we assume that∂xi

∂xj
= 0 for i 6= j. We are trying to de-

termine a locally stable state, where a greedy sender would
not have an incentive to change its sending rate given that
other sources do not change their own sending rates in re-
sponse to each other. No constraints are placed on∂pr

∂xr
. For

∑

i∈R xi > B, Equation (2) becomes:

U ′

(

Bxr
∑

i∈R xi

)

= α

(

∑

i∈R xi

B

(

1

1 − xr�
i∈R xi

)

− 1

)

.

(4)
Using this expression, we can analyze the effect of multi-
ple greedy senders with the same utility curves on a single
resource. Assume that all senders are sending at the equilib-
rium ratexe. If xe > B

n , then the equation above holds, and
becomes:

U ′

(

B

n

)

= α

(

nxe

B

(

n

n − 1

)

− 1

)

. (5)

Thus the equilibrium ratexe at which all senders do not
have an incentive to change is

xe =

{

B
n if (n − 1)U ′

(

B
n

)

≤ α;
B
n

(n−1)
n

(

U ′(B/n)
α + 1

)

if (n − 1)U ′
(

B
n

)

> α.

(6)
In the first case, with a larger value forα, drops are costly to
the user, and the stable state has no loss.

In the second case, with(n−1)U ′
(

B
n

)

> α, the resulting
equilibrium drop ratepe will be

pe = 1 −
n

(n − 1)

1
(

U ′(B/n)
α + 1

) . (7)

Holding n constant and lettingα → 0, so that the cost of
drops becomes arbitrarily small to the user, the equilibrium
drop rate rises to1, as one would expect.

The optimal state, for almost any definition of optimal,
would be the state where all users send at rateB

n , with a
zero drop rate. However, ifα is sufficiently small, orn suffi-
ciently large, then this optimal state is not stable with drop-
tolerant greedy users and FIFO scheduling.

3.1 Linear utility functions
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Figure 1: Equilibrium drop rate with the linear utility func-
tion.

Given the linear utility functionU(y) = y, the equilibrium
rate at which all senders do not have an incentive to change
rates, assuming the link is saturated, is:

xe =

{ B
n if n − 1 ≤ α;
B
n

(n−1)
n

(

1
α + 1

)

. if n − 1 > α;

and the equilibrium drop ratepe is:

pe =

{

0 if n − 1 ≤ α;
1 − n

(n−1)
1

1/α+1 if n − 1 > α.

Figure 1 shows the equilibrium drop rate as a function ofn
andα, for α from 0 to 4, andn from 5 to 100.

Holding α constant and lettingn → ∞, the equilibrium
drop rate approaches 1

1/α+1 , and the sending rate will ap-

proachB
n

(

1
α + 1

)

. For a linear utility function,pe is inde-
pendent of the link capacityB. So when there is a negligible
cost for each dropped packet the equilibrium drop rate will
remain high for a given number of sources even when more
bandwidth is installed!

3.2 Log utility functions

Given the log utility functionU(y) = log(y), the equilib-
rium rate at which all senders do not have an incentive to
change rates, assuming the link is saturated, is:

xe =

{

B
n if n(n−1)

B ≤ α;
B
n

(n−1)
n

(

n/B
α + 1

)

. if n(n−1)
B > α;

and the equilibrium drop rate is:

pe =

{

0 if n(n−1)
B ≤ α;

1 − n
(n−1)

1

(n/B
α +1)

if n(n−1)
B > α.
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For simplicity, consider bothx andB in units of packets per
second. LettingB = 100 pps, the drop ratepe is plotted in
Figure 2. Figure 3 shows the drop rate forB = 5000 pps.
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Figure 2: Equilibrium drop rates for the log utility function,
B = 100 pps.
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Figure 3: Equilibrium drop rates for the log utility function,
B = 5000 pps.

Holdingα constant and lettingn → ∞ the drop rate will
rise to1.

3.3 Polynomial utility functions

Given the polynomial utility functionU(y) = −y−m for
m > 0, the equilibrium rate at which all senders do not have
an incentive to change rates, assuming the link is saturated,
is

xe =

{

B
n if mnm+1(n−1)

Bm+1 ≤ α;
B
n

(n−1)
n

(

m(n/B)m

α + 1
)

if mnm+1(n−1)
Bm+1 > α;

and the equilibrium drop rate is

pe =







0 if mnm+1(n−1)
Bm+1 ≤ α;

1 − n
(n−1)

1

( m(n/B)m

α +1)
if mnm+1(n−1)

Bm+1 > α.

Holdingα constant and lettingn → ∞ the equilibrium drop
rate will rise to1.

3.4 TCP drop rates

Assume thatn TCP connections, all with the same round-trip
time, go through a single link of sizeB packets per second.
Then the following equation holds, with either FIFO or FQ
scheduling:

B

n
=

1

T
√

2p
3 + tRTO

(

3
√

3p
8

)

p(1 + 32p2)

(8)

Figure 4 shows packet drop ratep as a function ofn, for
a specificB, T , andtRTO. For these low to moderate loss
rates the drop rate is primarily dependent on bandwidth delay
productBT/n available to each flow.4

0

0.2

0.4

0.6

0.8

1

50 100 150 200 250 300 350 400

D
ro

p 
ra

te
 p

Number of flows n

Figure 4: The packet drop ratep for TCP, with n senders
(B = 5000 packets per second,T = 0.1 seconds, and
tRTO = 0.2s).

Figure 5 displays the same packet drop rate as in Figure 4,
with thex-axis extended to show up to 10,000 flows. For this
regime of heavy congestion, the packet drop rate is largely
determined by TCP’s round trip timeout behaviour.

4 Greedy senders in an unpredictable
environment

The previous sections explored scenarios where, with FIFO
scheduling, the stable state might be one with a non-zero
packet drop rate for all flows. In those scenarios the use of
FQ scheduling would have been sufficient to ensure that the
stable state would have a zero packet drop rate. However in
scenarios where the bandwidth available to a flow changes

4This can be recovered from Equation (3) by noting that for small drop

rates,p ≈
1.5n

2

T2B2 .
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Figure 5: The packet drop ratep for TCP, with n senders
(B = 5000 packets per second,T = 0.1 seconds, and
tRTO = 0.2s).

in a way that is not predictable in advance, greedy users can
have an incentive to maintain a nonzero packet drop rate in
an environment with either FIFO or FQ scheduling.

For a FIFO environment, we assume that the rateR of the
non-adaptive cross traffic traffic varies independently from
one round-trip time to the next, beingR1 with probability
p1 andR2 with probabilityp2 = 1 − p1. We assume that
R1 ≤ R2, so that state 1 is the good state for the greedy flow.
For a FQ environment, we could model a similar situation by
varying the number of cross-traffic flows from one round-trip
time to the next. These scenarios of unpredictable bandwidth
could be thought of as corresponding to a scenario with vary-
ing bandwidth on wireless links, erratic higher-priority traf-
fic, or a changing number of competing flows.

For simplicity, we assume a single greedy sender with lin-
ear utility and cost functions. The greedy source will choose
a sending rate to maximize

r(1 − E(d)) − αrE(d) = r (1 − (1 + α) (p1d1 + p2d2)) .

whered1 = min
(

0, 1 − 1
r+R1

)

is the loss rate whenR =

R1 and similarly ford2.
The greedy source’s behaviour is equivalent to maximiz-

ing the functionf , where

f(r) =







r if r ≤ 1 − R2;
g(r) if 1 − R2 < r ≤ 1 − R1;
h(r) if r > 1 − R1.

The functionsg(r) andh(r) are defined by

g(r) = r

(

1 − p2(1 + α)

(

1 −
1

r + R2

))

, (9)

h(r) =

r

(

1 − (1 + α)

(

p1

(

1 −
1

r + R1

)

+ p2

(

1 −
1

r + R2

)))

,

These three regions correspond to no congestion, congestion
only in state 2, and congestion in both states, respectively.

Let r̃ be the value ofr that maximizesg(r) in the second
region, with congestion only in state 2, andr̄ be the maxi-
mum ofh(r) in the third region.5

The maximum value off(r) in Equation 4 is then given by
max {1 − R2, f(r̃), f(r̄)}. The valuêr that maximizesf(r)
is given by whichever of1−R2, r̃, r̄ achieves this maximum.

Differentiatingh and g in Equation 9 with respect tor
gives

g′(r) = (1 + α) p2R2

(R2+r)2 − (1 − p2 (1 + α))

h′(r) = (1 + α)
(

p1R1

(R1+r)2 + p2R2

(R2+r)2

)

− α.

The valuer̃, which maximizesg(r) in the second region, is
thus

r̃ =











1 − R1 if α < 1
p2

− 1 or α < A;

1 − R2 if α ≥ 1
p2

− 1 andα ≥ B;
√

(1+α)p2R2

(1+α)p2−1 − R2 if α ≥ 1
p2

− 1 andA ≤ α ≤ B.

for

A =
1

(1 + R2 − R1)
2
− R2

(

(1 + R2 − R1)
2

(

1 −
1

p2

)

− R2

)

,

B =
R2

1 − R2
.

The valuêr can be found numerically by determining the
root ofh′(r) = 0.

Figures 6 to 11 display the optimal sending rates and the
resulting loss rates for a variety of scenarios, and were com-
puted as above. These figures show that for some scenar-
ios, the unpredictability of bandwidth results in a significant
steady-state packet drop rate with greedy senders.

5 Dumb senders in a cyclic topology.

We now consider scenarios with flows that traverse multi-
ple congested links, and the dead packet ratios that arise for
different links in the topology.

This section considers a cyclic network as in Figure 12.
The network consists of2K links of bandwidthB with M
flows of rateR entering at any given point and traversingK
links. We assume a packet drop ratep on all links in the cy-
cle, Section 5.1 gives the analysis of the goodput and dead
packet ratios, and the following sections give simulation re-
sults.

5The valuẽr exists asg(r) is continuous on the closed bounded interval
[1 − R2, 1 − R1]. The valuer̂ exists ash(r) is a concave function on
[1 − R1,∞).
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Figure 6: Sending rate and loss rate vsα for R1 = 0.1,
R2 = 0.9, p1 = 0.1, andp2 = 0.9

Figure 7: Sending rate and loss rate vsα for R1 = 0.4,
R2 = 0.6, p1 = 0.1, andp2 = 0.9
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Figure 8: Sending rate and loss rate vsα for R1 = 0.1,
R2 = 0.9, p1 = 0.5, andp2 = 0.5

Figure 9: Sending rate and loss rate vsα for R1 = 0.4,
R2 = 0.6, p1 = 0.5, andp2 = 0.5
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Figure 10: Sending rate and loss rate vsα for R1 = 0.1,
R2 = 0.9, p1 = 0.9, andp2 = 0.1

Figure 11: Sending rate and loss rate vsα for R1 = 0.4,
R2 = 0.6, p1 = 0.9, andp2 = 0.1

5.1 Analytic Model

For the analysis in this section, we assume that all links in
the cycle have a packet loss rate ofp, experienced by each
packet arriving at the link. Then for a given flow the rate at
theith link is

R(1 − p)i.

Hence summing over all flows traversing a given link

B = MR

K
∑

i=1

(1 − p)i = MR(1 − p)

(

1 − (1 − p)K

p

)

.

(10)
Solving numerically forp allows the loss rate to be predicted.
The simulations later in this section show that the predicted
link loss rate corresponds quite closely to the link loss rate in

simulations with CBR flows.
Let µ = MR

B , so thatµ gives the arrival rate of a set ofM
flows as a fraction of the link bandwidth. Then the aggregate
network goodput measured in packets reaching their network
destination is given by

t
∑2K

i=1 MR(1 − p)K

s
=

2tKµB(1 − p)K

s
, (11)

wheret is the time over which the goodput is measured and
s is the packet size of the packets in each flow.

Similarly the total load in packets over timet is given by

2KMRt

s
=

2KBµt

s
. (12)

Calculating the loss ratep from Equation 10 allows the total
goodput to be calculated.

7



Figure 12: A cyclic network (K=3).

5.1.1 The dead packet ratio

Once we know the packet drop ratep for the links in the FIFO
cyclic topology, we can determine the dead packet ratio for
each link. Our results below show that forK = 1 the dead
packet ratio is zero, and forK = 2 the dead packet ratio
is p

2−p . If the link loss ratep remains fixed, then the dead
packet ratio approaches1 asK increases.

For K = 1 the dead packet ratio is zero, since no flow
travels multiple congested links. We also compute the dead
packet ratio for other values ofK, given a fixed value forp
for all links in the cycle. Assume that each linkL carries
flows that are on theirith link of the cycle, fori from 1 toK.
The departure rate from the output queue is

K
∑

i=1

x(1 − p)i.

The rate on the link consisting of traffic that will be dropped
downstream is

K−1
∑

i=1

x(1 − p)i(1 − (1 − p)K−i).

Thus the dead packet ration for a link on the cycle is

1 − (1 − p)K−1(1 + p(K − 1))

1 − (1 − p)K
. (13)

This is shown in Figure 13 forp = 0.1. ForK = 2 the dead
packet ratio is given by

p

2 − p
.

5.2 Simulation Method

We conducted simulations of a variety of scenarios to test
the validity of the theoretical model described above. The

0.2

0.4

0.6

0.8

1

20 40 60 80 100K

Figure 13: Dead packet ratio as a function ofK, for fixed
p = 0.1.

approach was to simulate a topology in which the links had
bandwidth 8 Mbps and delay 20 ms. Each flow was as-
sumed to be consistent with a CBR voice call and so had
bandwidth 80 Kbps in packets of size 200 bytes.6 M such
CBR sources were attached to each of the2K nodes and the
respective sinks were placedK nodes clockwise from each
source. The CBR sources were instructed to start generating
traffic at start times chosen uniformly between 0.1 and 0.12
seconds.

Each source packet’s arrival time was randomized using
a displacement jitter model7. In this jitter model, suppose
thatTi is the time at which theith packet of a source is sent.
Then for CBR traffic with packet intervalt

Ti = i.t + Di

whereDi is the random jitter on each packet. In the sim-
ulations here,Di was a sequence of identical independent
random variables with uniform distribution on[0, d] with
d = 20ms. This produced inter-arrival times

Ti+1 − Ti = t + Di+1 − Di

The usage of such a displacement jitter model more correctly
models network- and machine-scheduling-induced jitter for
CBR streams such as voice over IP where the sending rate is
ultimately capped by the availability of speech samples.

Simulations were run for a period of 40 seconds, with the
first 10 seconds of data discarded to remove startup tran-
sients. For each configurationK ∈ {2, 3, 4, 5, 6}, the net-
work was simulated for loads of

KMR

B
= K.µ = i,

wherei varied from 0.5 to 2.5 in 0.1 increments. The loads
were generated by varying the number of flowsM entering
the network at a given node.

6This is consistent with 8 KHz 8-bit samples and 20 ms frames, giving a
payload of 160 bytes with 40 bytes of packet header overhead.

7This differs from the standard ns-2 CBR randommodel in which the
inter-arrival time is set tot + t ∗ Xi whereXi is distributed uniformly on
[−0.5, 0.5].
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In order to remove phase effects caused by simulation ar-
tifacts, a small quantity of reverse-path traffic was added to
each link. This was done by using small one-hop TCP con-
nections along the reverse path of each link, resulting in a
small number of TCP acknowledgement packets on the for-
ward path.

For simulations using adaptive RED queue management,
with dumb sources sending at rateR, the goodput and dead
packet ratios can be computed, and the simulation results
match the predictions from analysis.

For simulations with Drop Tail queue management, how-
ever, due to synchronization effects, the simulation results
failed to match the analysis. In the simulations, one flow
would be favored, and as a result overall goodput was higher
than predicted. We decided not to pursue the vagaries of traf-
fic dynamics with Drop Tail queue management in further
detail.

5.3 A comparison of predicted and simulation
results

Figures 14 and 15 present graphs of load (measured inµ =
MR
B ) verses loss rate. We note that whenµ = 1/K, the

network is fully loaded with no packet losses. Each point
represents a queue’s loss rate over the last 30 seconds of the
simulations. The line and cross marks represent the predicted
loss rate solving Equation 10 numerically. The dots from
the simulations are hard to see because they overlap the line
with the analytical results. Thus, the analysis predicts the
loss rates seen in simulations almost exactly.

Figures 16 and 17 shows the aggregate throughput as a
function of the aggregate offered load over the last 30 sec-
onds of the simulations. The maximum possible aggregate
throughput over that period is 300,000 packets. Each dot
represents the total packets received over the last 30 seconds
in simulations. The line and cross marks represent the pre-
dicted number of packets received by solving Equation 10
numerically and then substitutingp into Equation 11. Again
the analysis predicts the simulation results with almost noer-
ror. The results show how the aggregate goodput suffers for
the cyclic topology as the offered load exceeds the available
bandwidth.

5.4 Conclusion

The main conclusions from this section are the following:

• The analysis provides a good model for the goodput in
a cyclic topology, given RED queue management.

• Analytic modelling of packet loss rates in simple sce-
narios requires care, as the behaviour of some queu-
ing disciplines (especially DropTail) does not match the
models. The addition of reverse-path traffic and other

“realistic” background traffic can help to remove some
simulation artifacts but not necessarily all.

• In the cyclic scenario, the aggregate goodput can de-
crease sharply as the offered load increases, particularly
for larger values ofK.

6 Greedy senders in a cyclic topology

Suppose now that there are many greedy senders on a cyclic
topology with FIFO scheduling at the routers. As in the pre-
vious section, we consider a cyclic network in which there
are2K nodes connected with links of bandwidthB. At each
node in the cycle there areM sources sending at ratex to
sources that areK nodes clockwise downstream. By sym-
metry the drop rate at each link isp. Summing over each
flow arriving at a link,

M

K
∑

i=1

x(1 − p)i = B,

and thus

Mx(1 − p)

(

1 − (1 − p)K

p

)

= B. (14)

For the greedy senders, each source gets utilityU(y),
whereU(y) is a concave function of the received ratey,
and experiences a cost ofα for each unit of transmitted data
dropped. Then the source will attempt to solve the following
optimization for the sending ratex:

maximise U (x (1 − p̃)) − αp̃x
subject to x ≥ 0
where p̃ is the end-to-end drop rate.

To simplify the analysis, we assume that each source does
not consider the change in its end-to-end drop rate caused by
altering its own sending rate; i.e.∂pr

∂xr
= 0. This assump-

tion would correspond to a network with a large number of
independent sources. The sources will set their rates such
that

(1 − p̃)U ′ (x (1 − p̃)) − αp̃ = 0.

If U(y) is a concave function such thatU ′(y) → ∞ asy →
∞ andU ′(y) → 0 asy → 0, then such a ratex will exist.

6.1 Drop rates for log utility functions

TakingU(y) = log(y), thenU ′(y) = 1
y and so the optimiz-

ing source will send at ratẽx satisfying

(1 − p̃)

x̃(1 − p̃)
− αp̃ = 0.
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Figure 14: Load vs loss rates for K=2. Figure 15: Load vs loss rates for K=5.
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Figure 16: Offered load vs goodput for K=2. Figure 17: Offered load vs goodput for K=5.

Thus the sources send at

x̃ =
1

αp̃
. (15)

For this cyclic topology,̃p = 1 − (1 − p)K , and so by sub-
stituting into Equation 14, the link drop rates are given by

p =
1

(αB/M) + 1
. (16)

Notice that this expression (somewhat surprisingly) does
not depend on the numberK of links that flows traverse.
However, using Equation 13, the dead packet ratio is depen-
dent on K and is given by

1 −
KM(αB)K−1

(αB + M)K − (αB)K
(17)

6.2 Drop rates for polynomial utility functions

TakingU(y) = −y−m for m > 0, thenU ′(y) = my−(m+1)

and so an optimizing source will send at ratex̃ satisfying

m

(x(1 − p̃))
m+1 =

αp̃

1 − p̃
.

Thus the sources will send at

x̃ =

(

m

αp̃(1 − p̃)m

)
1

m+1

.

For this cyclic topology,̃p = 1 − (1 − p)K , and so, substi-
tuting into Equation 14,

B =
Mp(1 − (1 − p)K)

p

(

m

α(1 − p)Km(1 − (1 − p)K)

)
1

m+1

.

The link drop rates can be determined using numerical meth-
ods to solve this implicit equation forp. The results from
Section 5.1.1 can be used to determine the dead packet ratio
from p andK.

6.3 Drop rates with Fair Queueing

For this perfectly symmetric topology with greedy users, we
show that the use of FQ scheduling would be sufficient to
reduce the dead packet ratio on the congested links to zero.

In this topology, the use of FQ instead of FIFO scheduling
would mean that instead of each flow experiencing the same
drop ratep on each link in the cycle, instead each flow would
receive the same per-flow bandwidth share on each link in
the cycle. We note that this symmetry of per-flow bandwidth
share depends on the underlying symmetry in the number of
flows entering at each link, and in the underlying symmetry
of the user behaviour. This symmetry of per-flow bandwidth
share means that even if the greedy flows had an incentive to
send more than this share, this would only result in packets
dropped from each greedy flow at its first link in the cycle;
no packets would be dropped from those flows on subsequent
links in the cycle. Thus, with FQ, the dead packet ratio would
be zero in this scenario even with greedy senders.

10



7 Dumb flows in a railroad topology,
with both FQ and FIFO

This section shows scenarios with dumb (non-adaptive)
flows in a railroad topology, as shown in Figure 18. We con-
sider the goodput and the dead packet ratio with FQ as well
as with FIFO scheduling. It has always been easy to con-
struct scenarios where FQ gives better goodput than FIFO
[2]. In this section we explore a wider range of topologies
than the few simple topologies considered in [2]. We show
that it is easy to construct scenarios where goodput is better
with FIFO than with FQ scheduling, as well as the scenarios
where goodput is better with FQ. This section is a first step
at understanding when the use of FQ scheduling will signif-
icantly reduce the dangers of congestion collapse, when the
use of FQ will increase the dangers of congestion collapse,
and when the use of FQ will make little difference one way
or another.

Consider a network with the topology shown in Figure
18, where each of the two congested links has bandwidth
B. Each flow has unit bandwidth, withm andn cross-flows
andi multi-hop flows.

B

m n

i

B

Figure 18: A multi-hop topology

We assume that the demand at each of the two shared links
exceeds its capacity. In particular, we only consider cases
wherei + m ≥ B, and wheren is sufficiently large to result
in congestion. With either FQ or FIFO scheduling, the loss
ratep1 at the first congested link is

p1 = 1 −
B

i + m
. (18)

As we show below, the total goodput for this scenario is the
same with FQ or FIFO scheduling. (The total goodput is the
throughput B in the second congested link, plus the fraction
of the link bandwidth on the first congested link used by the
m cross-flows.) However, the dead packet ratio for the first
link depends on the scheduling discipline. The dead packet
ratio for the first link is determined by the fraction of link

bandwidth on the second congested link given to thei multi-
hop flows.

7.1 All flows the same size

In this section, we use the assumption that all flows have
unit bandwidth. We consider the dead packet ratio at the first
congested link first with FQ scheduling, and then with FIFO
scheduling.

7.1.1 FQ scheduling

In this section we assume that the routers use Fair Queue-
ing scheduling. Because we assume that the demand at each
congested link exceeds its capacity, on leaving the first con-
gested link each flow receivesBi+m while on leaving the sec-

ond congested link each flow receivesBi+n . If

B

i + m
>

B

i + n
, (19)

that is,n > m, then there is wasted bandwidth at the first
congested link.

Givenn > m, the total network goodputG is

GFQ = B +
mB

i + m
, (20)

with an offered load ofi + m + n.

With Fair Queueing, the throughput dropped from each
long flow at the second congested link isBi+m − B

i+n . Thus
with FQ the dead packet ratioD1,FQ at the first congested
link is

D1,FQ =
i

(i + m)
−

i

i + n
.

The dead packet ratio is shown in Figure 19 fori = 10, for
a range of values form andn. As one might expect, the
dead packet ratio is highest whenm is small andn is large.
Figure 20 shows the dead packet ratio for a different value
for the bottleneck link bandwidthB, where the dead packet
ratio is small both with FIFO and with FQ.

7.1.2 FIFO scheduling

Suppose that instead the routers use FIFO scheduling. The
network goodput is

GFIFO = B + (1 − p1)m = B +
mB

i + m
, (21)

with an offered load ofi + m + n.

With FIFO scheduling, the second congested link has a
total arrival rate iB

i+m + n, for a packet drop ratep2 of

p2 = 1 −
1

i
i+m + n

B

.
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Figure 19: Dead packet ratio for the first congested link, for
i = 10, B = 20.
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Figure 20: Dead packet ratio for the first congested link, for
i = 10, B = 50.

Thus with FIFO the dead packet ratio at the first congested
link is

D1,FIFO = p2
i

(i + m)
=

i

i + m
−

i

i + n(i+m)
B

.

Observe that fori + m > B (that is, assuming saturation
at first link), with FIFO the dead packet ratio,D1,FIFO, is
always at least that for FQ,D1,FQ. This is shown in Figure
19 for i = 10 andB = 20. As Figure 19 shows, form = 10
the long and short flows have the same arrival rate at the
second congested link, and the dead packet ratio at the first
congested link is the same with FQ as with FIFO. In contrast,
for m > 10 the long flows each have a smaller arrival rate
at the second congested link than the short flows, and there-
fore receive less of the packet drops with FQ. Thus, for these
scenarios, the dead packet ratio at the first congested link is
higher with FIFO than with FQ.

7.2 Flows of different sizes

In this section we consider the scenario where then short
flows at the second congested link are each of size1/k, for
k ≥ 1, while the other flows are all still of unit size. Given
the condition that both shared links remain congested, this
change in the size of then short flows does not change the
overall goodput. However, it does change the dead packet
ratio on the first congested link, by changing the bandwidth
allocated to thei long flows on the second congested link.

With FQ, the dead packet ratio at the first congested link
is

D1,FQ =

{

i
i+m − i

i+n if 1
k > B

i+n
i

i+m − i
i+n + 1

i

(

B
i+n − 1

k

)

if 1
k ≤ B

i+n

In the first case, flows at the second congested link receive
less than1/k bandwidth, while in the second case flows at
the second congested link receive at least1/k each.

With FIFO, given a non-zero drop rate at the second con-
gested link (that is,nk > mB

i+m ), we have

p2 = 1 −
1

i
i+m + n

kB

.

Thus with FIFO the dead packet ratio at the first congested
link is now

D1,FIFO = p2
i

(i + m)
=

(

1 −
1

i
i+m + n

kB

)

i

i + m

=
i

i + m
−

i

i + n(i+m)
kB

.

Figure 21 compares the dead packet ratio at the first con-
gested link with FIFO and with FQ scheduling. Whenk is
large, the long flows are dropped more heavily at the second
congested link under FQ than under FIFO, and in this case
the dead packet ratioD1 is higher with FQ. In particular, if
i+n
B > k > i+m

B , then the dead packet ratioD1 is higher
with FQ than with FIFO, and ifk < i+m

B , then the dead
packet ratioD1 is higher with FIFO. (Note that we already
have the condition thati+m

B ≥ 1.) As an example, Figure 21
shows that fori = 10, B = 20, k = 2, andn ≥ 30, the dead
packet ratio is higher with FQ than with FIFO form < 30,
and higher with FIFO form > 30.

7.3 Adding another congested link

Now we add a third congested link where then flows of size
1/k compete withr flows each of size1/j, with the assump-
tion that all three shared links are fully utilized. The addition
of the third congested link does not change the dead packet
ratioD1 at the first congested link. However, it does change
the total goodput, with the total goodput now depending on
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Figure 21: Dead packet ratio for the first congested link, for
i = 10, B = 20, k = 2.
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Figure 22: A multi-hop topology with three congested links.

D1. We show that for some parameters the total goodput in
this scenario is higher with FIFO, while for other parameters
the total goodput is higher with FQ.

The total goodput now consists of the goodput from the
third congested link plus the goodput from the first congested
link. Thus with FQ, the total goodput in this case is:

GFQ = 2B − BD1,FQ,

while with FIFO, the total goodput is:

GFIFO = 2B − BD1,FIFO

Thus, ifk > i+m
B , then the total goodput is higher with FIFO

than with FQ, while fork < i+m
B , the goodput will be higher

with FQ.

8 Greedy flows in a railroad topology

In the previous section, the dead packet ratio and the over-
all goodput were explored in scenarios with dumb flows
sending at fixed rates, regardless of the packet drop rates

experienced by the flows. In Section 3 we showed that
drop-tolerant greedy senders can send with high equilibrium
packet drop rates in scenarios with FIFO scheduling, or in
scenarios with FQ with an unpredictable per-flow bandwidth.
Thus, it seems likely that one could have high equilibrium
packet drop rates with drop-tolerant greedy senders in gen-
eral FIFO topologies, or in general FQ topologies with an
unpredictable per-flow bandwidth. This section is a first step
at exploring the dead packet ratio and the overall goodput in
scenarios like those in the previous section, but with greedy
instead of with dumb flows.

The ultimate goal would be to consider both predictable
and unpredictable per-flow bandwidth, and with both FIFO
and FQ scheduling. However, the analysis in this section
only considers the case with long-lived flows, with a pre-
dictable per-flow bandwidth. For a scenario with greedy
flows and predictable bandwidth, the use of FQ should be
sufficient to make the stable state be one with zero packet
drops. However, for a scenario with greedy flows and unpre-
dictable per-flow bandwidth, the ability of FQ to reduce the
steady-state packet drop rate might vary from one scenario
to another.

I

B B 21

1 2II

3

Figure 23: A multi-hop topology with greedy senders

Consider a network in which there are two congested links
with greedy flows competing for bandwidth as shown in Fig-
ure 23. The index setsI1, I2, I3 represent the routes from
left-top to left-bottom, right-top to right-bottom, and left to
right respectively. Letpi be the end-to-end drop rate for
flows in index seti, andU(y) be the utility function for each
flow as a function of the received ratey.

Using the results of Section 2.1 the equilibrium point will
be such that the rates satisfy

U ′(xr(1 − p1)) = ∂Cr

∂xr

1

1−p1−xr
∂p1
∂xr

Forr ∈ I1;

U ′(xr(1 − p2)) = ∂Cr

∂xr

1

1−p2−xr
∂p2
∂xr

Forr ∈ I2;

U ′(xr(1 − p3)) = ∂Cr

∂xr

1

1−p3−xr
∂p3
∂xr

Forr ∈ I3.

(22)
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where the drop rates are given by

p1 =

{

0 If
∑

r∈I1∪I2
xr ≤ B1;

1 − B1�
r∈I1∪I2

xr
If
∑

r∈I1∪I2
xr > B1;

(23)

p2 =

{

0 If A(x) ≤ B2;

1 − B2�
r∈I2

xr+
�

r∈I3
(1−p1)xr

If A(x) > B2;

whereA(x) =
∑

r∈I2
xr +

∑

r∈I3
(1 − p1)xr ,

(24)
p3 = 1 − (1 − p1)(1 − p2). (25)

Such a model becomes difficult to analyse in full gener-
ality, so we will assume that each greedy sender is a small
enough amount of aggregate traffic that∂pr

∂xr
= 0 holds and

that the cost function is given byC(x) = αxrpr. Equation
(22) becomes

U ′(xr(1 − p1)) = αp1

1−p1
Forr ∈ I1;

U ′(xr(1 − p2)) = αp2

1−p2
Forr ∈ I2;

U ′(xr(1 − p3)) = αp3

1−p3
Forr ∈ I3.

(26)

Notice that the dead packet ratio for this topology is given
by

(
∑

r∈I3
xr(1 − p1)

)

p2

B1
. (27)

8.1 Log utility

With a log utility functionU(y) = log(y) of the received
ratey,the equilibrium point will be such that

xr = 1
αp1

Forr ∈ I1;

xr = 1
αp2

Forr ∈ I2;

xr = 1
α(1−(1−p1)(1−p2))

Forr ∈ I3.
(28)

8.2 Polynomial utility functions

With a polynomial utility functions of the formU(y) =
−y−m with m > 0 wherey is the received rate the equi-
librium point will be such that

xr =
(

m
αp1(1−p1)m

)
1

m+1

Forr ∈ I1;

xr =
(

m
αp2(1−p2)m

)
1

m+1

Forr ∈ I2;

xr =
(

m
α(1−(1−p1)(1−p2))((1−p1)(1−p2))m

)
1

m+1

Forr ∈ I3.

(29)

9 Related Work

System equilibrium and resource allocations have been stud-
ied extensively as network optimisation problems in which
load is transmissive [4, 5, 6] ; for example in an ECN net-
work the load applied on a route is felt at all links that form

the route. The study of congestion collapse is inherently the
study of a non-transmissive system. This paper also consid-
ers scenarios in which a greedy flow may change its sending
rate in response taking into account its own impact on the
drop rate it experiences.

Bonald and Massoulie [1] consider how network resource
allocation (or fairness) affects network congestion at the
level of flow arrivals and departures. They consider a dy-
namic population of short-lived transfers, and explore the
conditions under which response times of transfers remain
finite. The paper shows that for arbitrary network topolo-
gies and a broad class of fair bandwidth allocations, response
times remain bounded if and only if the load offered to each
link is less than one. In contrast simple examples are given
with class-based scheduling, such as fair queueing, where the
number of flows in progress can grow unbounded while the
average arriving load on each link is strictly, and sometimes
greatly, less than one.

10 Conclusions

In the first half of this paper, we have explored the equilib-
rium packet loss rates that can arise in a range of scenarios,
and in the second half we have explored the potential for loss
of overall goodput as a result of this equilibrium packet loss
rate. In particular, the first half of the paper has demonstrated
the following:

• The equilibrium sending rates and packet loss rates for
scenarios withn greedy users sharing a FIFO link are
given in Section 3, for a range of values for the util-
ity and cost functions. For example, for greedy users
sharing a FIFO link the equilibrium packet loss rate can
approach 1 asn approaches∞.

• The results in Section 3 of a high equilibrium packet
loss rate with greedy users applies only to the sce-
nario with FIFO scheduling. The use of FQ schedul-
ing would be sufficient, givenn long-lived flows with
unlimited demand, to ensure a zero packet loss rate in
those scenarios. In Section 4 we added bursty, non-
adaptive cross traffic, either of one flow or of many co-
ordinated small flows, to give the greedy users an in-
centive to maintain a nonzero packet loss rate even in
an environment with FQ scheduling. In these scenarios
with bursty, non-adaptive cross traffic, the equilibrium
packet loss rate depends on the cost functions of the
users, but with loss-tolerant greedy users the equilib-
rium loss rates can be high even with FQ scheduling.

• The overall result of the first half of the paper is that
it is possible to have high equilibrium loss rates with
greedy senders sharing a FIFO link, or with greedy
senders sharing an FQ link with bursty cross-traffic.
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With greedy senders, the equilibrium loss rates depend
heavily on the utility functions and cost functions of the
end users.

In the second half of the paper we consider scenarios with
many senders with high sending rates and high loss rates, in
topologies with multiple congested links, and consider the
goodput of the congested links (where the goodput includes
only those packets that will not be dropped on other con-
gested links downstream). The results include the following:

• Section 5 considers aggressive senders in a cyclic net-
work with FIFO scheduling, where each flow traverses
K links in a cycle, and evaluates the link goodput using
both analysis and simulations. In this scenario, given
a fixed equilibrium packet drop rate at each link, the
link goodput approaches 0 asK approaches∞. (We
note that the per-flow end-to-end packet loss rate also
approaches 100% in this case.)

• Section 7 considers aggressive senders in a railroad
topology, and compares goodput with FIFO and with
FQ scheduling. In addition to the known simple sce-
narios where the goodput is higher with FQ schedul-
ing, this section gives scenarios where the goodput is
higher with FIFO scheduling. For the topologies in
Sections 7.2 and 7.3, adjusting simple parameters like
the number or size of competing flows controls whether
the goodput is higher with FQ scheduling or with FIFO
scheduling.

We would note that this paper does not pretend to consider
realistic topologies, realistic models of competing bursty
traffic, or realistic cost and utility functions for greedy
senders. Thus, this work can not be used to make predic-
tions about packet loss rates or goodput levels in realistic
scenarios. We see this work as a small step towards under-
standing the potential loss of goodput from high steady-state
packet drop rates in topologies larger and more complex than
the simple topologies of a single congested link or a single
string of congested links.

This paper is motivated in part by a concern about the po-
tential for congestion collapse, or of a simple loss of good-
put, in the presence of greedy, loss-tolerant traffic. The point
is not that there is anything wrong with scenarios with greedy
traffic, or with FQ instead of FIFO scheduling. The point is
simply that even with greedy traffic, or even with a topol-
ogy with FQ scheduling, it is important for senders to avoid
persistent high packet drop rates.

This work leaves open the analysis of the effects of sources
which have non-concave utility functions. It should be noted
that this is still an open issue in the case of transmissive load
systems. It should also be noted that despite considerable
effort this work has not been able to provide a generalized
calculation method for determining system equilibriums in

general topologies with greedy sources. Methods for analyz-
ing transmissive load systems (e.g. an ECN network) given
in [4, 6, 5] are able to make more progress on calculating
system equilibriums.
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