
Issues of TCP with SACK

Sally Floyd
floyd@ee.lbl.gov

VERY ROUGH DRAFT

March 9, 1996

1 Introduction

In this note we investigate several issues regarding the be-
havior of TCP with SACK, for the TCP SACK option as
proposed in [MMFR95].

The first question that we address is the following: Will
TCP with SACK be more aggressive in the presence of con-
gestion than current TCP implementations, in a way that is
damaging to the network?

A second, related question concerns how current TCP
implementations fare in a congested environment competing
against TCP implementations with SACK.

The final issue that we address is more specific, and con-
cerns the limited number of SACK blocks in the SACK op-
tion format proposed in [MMFR95]. If a number of succes-
sive ACK packets are dropped in the network during a Fast
Recovery period, the sender could be unaware that the re-
ceiver has already received a packet, and could retransmit
that packet unnecessarily. In Section 3 we quantify the ex-
posure of TCP with SACK to the unnecessary retransmission
of packets. We show that this exposure is low, and is strictly
less that the exposure of current TCP implementations.

For further background on our simulator and discussion
of issues related to TCP with SACK, the reader is referred to
[FF95].

2 Congestion control issues

2.1 Will TCP with SACK damage the network?

Certainly it would be possible to build “dangerous” imple-
mentations of TCP with SACK, just as it is possible to build
dangerous implementations of TCP without SACK (danger-
ous, that is, to other users of the Internet). However, imple-
mentations of TCP with SACK should follow the underlying
congestion control principles that have guided TCP imple-
mentations for the last eight years [Jac88].

That is, for every window of data from which one or
more packets is dropped, the sender interprets this as an in-

This work was supported by the Director, Office of Energy Research,
Scientific Computing Staff, of the U.S. Department of Energy under Con-
tract No. DE-AC03-76SF00098.

dication of congestion, and reduces the sender' s congestion
window by half. To further avoid overloading the network,
outgoing data packets are effectively “clocked” by incoming
ACK packets, and therefore obey a principle of “conserva-
tion of packets”. With current TCP congestion control algo-
rithms, an incoming ACK packet permits at most two outgo-
ing data packets, even during a period of expansion such as
a slow-start.

Implementations of TCP with SACK should also adhere
to the current practices listed below. We argue that an im-
plementation of TCP with SACK that follows these current
practices and congestion control principles poses no danger
to other traffic in the network. The behavior of TCP with
SACK is identical to that of Reno TCP when at most one
packet is dropped from one window of data. When multiple
packets are dropped from one window of data, the behav-
ior of TCP with SACK is similar to that of Reno TCP when
only a single packet was dropped from the window. That is,
TCP with SACK does not unnecessarily penalize the TCP
connection when multiple packets are dropped from a sin-
gle window of data. In all other respects, TCP with SACK
behaves identically to Reno TCP.

1) Wait for three duplicate acknowledgements before re-
transmitting a packet. This delay provides robustness to pack-
ets reordered by the network. The sender might receive a
single duplicate acknowledgement simply because two data
packets were reordered in the network; in this case a retrans-
mission by the sender is unnecessary.

2) Respond conservatively to sustained severe conges-
tion. Both Tahoe and Reno TCP implementations respond
more conservatively to sustained severe congestion than a
simple halving of the congestion window each roundtrip time.
For TCP with SACK implementations, this conservative re-
sponse is provided by a possible wait for a retransmit timer
to expire, followed by a slow-start, whenever a retransmit-
ted packet is itself dropped. This conservative response is
also provided by a sender' s retransmission policy that, even
during Fast Recovery, used incoming SACK packets to clock
outgoing retransmitted data packets. This follows the current
practice of Reno TCP of obey the principle of “conservation
of packets” even during the Fast Recovery period.

In Tahoe implementations, a conservative response to sus-

1

tained congestion is provided by the use of slow-start for re-
covery for all congestion. In Reno implementations, when
a number of packets are dropped in one window of data, or
when a retransmitted packet is itself dropped, a conservative
response to sustained congestion is provided by waiting for
the retransmit timer to expire, followed by a slow-start.

3) Use retransmit timers to ensure the reliable delivery of
data. In TCP with SACK, by using retransmit timers exactly
as in done in Tahoe and Reno TCP, reliable delivery of data
is ensured.

The behavior of TCP with SACK is in some respects eas-
ier to understand than the behavior of the TCP Tahoe and
Reno algorithms. Unlike Tahoe TCP, with the complications
of the slow-start and congestion avoidance phases, and Reno
TCP, with the anomolous behavior that occurs when multiple
packets are dropped from a window of data, the performance
of TCP with SACK is more straightforward, easier to un-
derstand, and therefore easier to predict. TCP with SACK
allows a fairly clean and straightforward implementation of
the window decrease algorithm that has been used in the In-
ternet for many years now, of reducing the sender' s conges-
tion window by half when one or more packets are dropped
from the current window of data.

We will not necessarily understand every aspect of a mod-
ification to TCP before it is deployed in the network, How-
ever, TCP with SACK has been used for many years in sim-
ulations, and will receive more concentrated attention in the
immediate future. It has received at least as much advance
thought and discussion as have a number of other recent de-
ployments that have changed traffic dynamics in the Internet
(e.g., the WWW, unicast or multicast realtime traffic, reliable
multicast traffic, etc.).

2.2 How will older TCP implementations fare
against TCP with SACK?

Because TCP with SACK follows the same fundamental con-
gestion control principles as do current implementations of
TCP, connections using current TCP implementations will
not be suddenly “shut out” of the network by having to com-
pete against TCP with SACK. Nevertheless, current large-
window TCP connections are handicapped in their achieve-
able throughput by the forced wait for a retransmit timer to
expire when a number of packets are dropped in a window
of data in Reno TCP [FF95], and by the requirement for a
slow-start whenever a single packet is dropped in Tahoe TCP.
The performance of large-window TCP [BBJ92] will remain
handicapped until the SACK option is added to TCP.

Thus, if a large-window Tahoe or Reno TCP connec-
tion is competing for bandwidth against a large-window TCP
with SACK connection, the TCP with SACK connection will
receive the larger share of the link bandwidth. In the same
way, if a Tahoe connection were to compete against a large-
window Reno TCP connection in an environment without
multiple drops for a single window of data (e.g., RED gate-

ways [FJ93]), the Reno TCP connection would receive the
larger share of the link bandwidth. And if a Tahoe connec-
tion were to compete against a Reno connection in a noisy
environment with multiple packet drops in each congestion
epoch, the Tahoe connection would receive the larger share
of the link bandwidth.

Similarly, in the present Internet there are a number of
other circumstances that would cause different TCP connec-
tions to receive different shares of the link bandwidth. These
circumstances include different roundtrip times, different num-
bers of congested gateways, different TCP senders' clock
granularities, different TCP receivers' policies with regards
to delayed ACKs, and so on. It is not an argument against the
deployment of TCP with SACK that TCP with SACK con-
nections do not receive precisely the same bandwidth that
a Tahoe or Reno TCP connection would receive in the same
circumstances. However, there will certainly be performance
incentives for high-bandwidth TCP connections to use TCP
with SACK.

Because TCP with SACK follows the same fundamen-
tal congestion control principles as current implementations
of TCP, “mice” (that is, short small-bandwidth TCP connec-
tions, of whatever TCP flavor) should not be unduely pe-
nalized by having to compete against “elephants” (that is,
longer, large-bandwidth TCP connections) using TCP with
SACK. (We intend to investigate this competition for band-
width between mice and elephants in more detail in later
work.)

3 The unnecessary retransmission of
packets

In this section we investigate the robustness of TCP with
SACK with respect to the unnecessary retransmission of pack-
ets. We show that the exposure of TCP with SACK is strictly
less than that of current implementations of TCP.

In the proposal [MMFR95], each SACK option packet
can contain at least three SACK blocks, allowing each SACK
block to be repeated at least three times in three successive
ACK packets. However, if all of the ACK packets reporting a
particular SACK block are dropped, then the sender will as-
sume that the data in that SACK block has not been received,
and will unnecessarily retransmit those segments.

In this section we show that the exposure of TCP with
SACK in regard to the unnecessary retransmission of packets
is strictly less than the exposure of current implementations
of TCP.

3.1 Worst-case scenarios with Tahoe TCP

Figure 1 shows simulations with Tahoe TCP. The bottom
example in Figure 1 uses a delayed-ACK receiver, and the
top example does not. In Tahoe TCP, the sender will often
unnecessarily retransmit packets when multiple packets are

2

Time

P
ac

ke
t N

um
be

r
(M

od
 9

0)

0.0 0.1 0.2 0.3 0.4

0
5

10
15

20
25

..
...
..
...

...
..
...
...
.. ...

....

..
...
...

...

....
. ...

..

.
..
..

....
....
..

Time

P
ac

ke
t N

um
be

r
(M

od
 9

0)

0.0 0.2 0.4 0.6 0.8

0
10

20
30

40

..
...
...

...

...
...
..
..
....
. ...
..
...
...
...

...

...

..
...
...

...

....
. ...

..

.
..
..

....
....
..

....

Figure 1: Duplicate packets retransmitted with Tahoe TCP.

dropped from a single window of data. For both simulations
in Figure 1, four packets are dropped from a window of 10
packets, and the other six packets in the window are unneces-
sarily retransmitted by the sender. The simulations were run
by specifying to the simulator exactly which packets to drop
at the gateway, rather than by laboriously scheduling com-
peting traffic to produce the desired pattern of packet drops.
This allows us to easily create worst-case scenarios.

Figure 1 was generated by tracing data packets entering
and departing from the congested gateway. For each graph,
the -axis shows the packet arrival or departure time in sec-
onds. The -axis shows the packet number mod 90. Packets
are numbered starting with packet 0. Each packet arrival and
departure is marked by a dot on the graph. For example, a
single packet passing through the gateway experiencing no
appreciable queueing delay would generate two marks so
close together on the graph as to appear as a single mark.
Packets delayed at the gateway but not dropped will gener-
ate two colinear marks for a constant packet number spaced
by the queueing delay. Packets dropped due to buffer over-

These simulations can be run on “ns” with the commands “ns dups.tcl
tahoe1” and “ns dups.tcl tahoe2”, respectively. These simulations are run
with “bug-fix” set to true, to avoid multiple fast retransmits from drops in a
single window of data [Flo94].

flow are indicated by an “X” on the graph for each packet
dropped.

Because of the limitations of the cumulative acknowl-
edgement, the sender in these simulations can find out about
at most one additional dropped packet per roundtrip time.
Consider the top simulation in Figure 1. At time 0.2 the
sender receives three duplicate ACKs and initiates Fast Re-
transmit, retransmitting packet 9 and and entering slow-start.
When the sender receives the ACK for packet 9, acknowl-
edging all packets up to and including that packet, the sender
increases its congestion window to two packets and retrans-
mits packets 10 and 11. While packet 10 was needed at
the receiver, packet 11 was not, and the retransmission of
that packet was a waste of possibly-valuable link bandwidth.
When the receiver receives the retransmitted packet 10, it
sends an acknowledgement for all packets up to and includ-
ing packet 11.

Continuing in this fashion, when the sender receives the
acknowledgement for packet 11, it increases its congestion
window from two to three, and retransmits packets 12, 13,
and 14. While packet 12 was needed at the receiver, packets
13 and 14 were retransmitted unnecessarily.

With Tahoe implementations of TCP, when the conges-
tion window contains at least six packets the sender might
unnecessarily retransmit half of those packets. When the
congestion window contains more than six packets, it is easy
to construct scenarios where the sender unnecessarily retrans-
mits more than half of the packets in that window. Note that
behavior is similar with and without delayed acks.

3.2 Worst-case scenarios with Reno TCP

Figure 2 shows worst-case scenarios of unnecessarily retrans-
mitted packets with Reno TCP. The bottom example in Fig-
ure 2 uses a delayed-ACK receiver, and the top example does
not. In both simulations, six packets are dropped from a win-
dow of eleven packets, and five packets from that window
are unnecessarily retransmitted by the sender. In both simu-
lations the sender has to wait for a retransmit timer to expire
to recover from multiple packets dropped from a single win-
dow of data.

3.3 Worst-case scenarios with TCP with SACK

In contrast to these examples with Tahoe and Reno TCP, it
is more difficult to construct scenarios with TCP with SACK
where the sender unnecessarily retransmits packets. For this
section we consider a SACK option packet with room for
exactly three SACK blocks per SACK packet.

In this section we make the following assumptions about
the sender' s retransmit policies for TCP with SACK. First,
the sender does not retransmit any packets until it has re-
ceived three duplicate ACKs (that is, ACKs that don' t ad-

These simulations can be run on “ns” with the commands “ns dups.tcl
reno2” and “ns dups.tcl reno1”, respectively.

3

Time

P
ac

ke
t N

um
be

r
(M

od
 9

0)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0
10

20
30

..
...
..
...
...
..
...
...
. ..
...
...
..

..
....

....
...
...

...

...
....
....
....
....
....

Time

P
ac

ke
t N

um
be

r
(M

od
 9

0)

0.0 0.5 1.0 1.5

0
10

20
30

40

..
...
...
...
...
...
..
..
....
...
...
..
..
...
...
...
....

..
....
....
...
...
...
...
....
....
....
....

Figure 2: Duplicate packets retransmitted with Reno TCP.

vance the cumulative acknowledgement). Second, for every
duplicate ACK received, the sender retransmits at most one
data packet. These constraints limit the exposure of TCP
with SACK with regards to the unnecessary retransmission
of packets. The exposure of TCP with SACK is further lim-
ited by the redundancy in the SACK option that provides
that SACK blocks appear in several successive SACK option
packets.

Following a retransmit timeout, TCP with SACK uses the
same slow-start procedure as does Reno or Tahoe TCP, and
therefore has exactly the same exposure to unnecessarily-
retransmitted packets. We show that in the absence of a re-
transmit timeout, the simpliest scenario that can produce a
single unnecessarily-retransmitted packet for TCP with SACK
requires a sender congestion size of at least 11 packets.

Why is a congestion window of at least 11 packets re-
quired? Without constructing a formal proof, here is the de-
scription:

1) At least one data packet has to have been dropped to
cause a Fast Retransmit in the first place.

2) The sender has to successfully receive three dup ACKs
to begin a Fast Retransmit. These account for three more of
the 11 required data packets.

3) At least three SACK packets have to be dropped for

Data ACK packet Eventual sender
Pkt. reaction

1 Normal ACK:1 Send 12 (normal)
2 (data packet lost)
3 Dup Ack:1 3-3 No action
4 Dup Ack:1 3-4 No action
5 Dup Ack:1 3-5 Retransmit pkt. 2
6 Dup Ack:1 3-6 (ACK lost)
7 (data packet lost)
8 Dup Ack:1 8-8 3-6 (ACK lost)
9 (data packet lost)
10 Dup Ack:1 10-10 8-8 3-6 (ACK lost)
11 (data packet lost)
12 Dup Ack:1 12-12 10-10 8-8 Retransmit pkt. 6

Figure 3: Worst-case example for TCP with SACK.

the sender to be unaware that the receiver has received a par-
ticular packet. These account for three more (seven so far)
of the 11 required data packets.

4) For a data packet to be acknowledged in only three
successive SACK packets, the data packet has to be followed
by a dropped packet, followed by two singletons (that is, data
packets both preceded and followed by dropped packets).
These account for at least three more dropped data packets,
for a total so far of 10 of the 11 required data packets.

5) Finally, because the first packet retransmitted by the
sender is always a packet that has never yet been acknowl-
edged, the sender must receives at least a fourth duplicate
ACK in order to send the unnecessarily-retransmitted packet.
This accounts for all 11 of the required packets.

So we have established that a congestion window of at
least 11 packets is required for the sender to unnecessarily
retransmit a packet, with at least four data packets dropped
from that window of data. Given such a sequence of 11 data
packets, a precise sequence of exactly three lost ACK pack-
ets is required in order for the sender to unnecessarily re-
transmit a packet.

In this example, because three successive SACK packets
were dropped, the sender is unaware that the receiver has
received packet 6. Given this sequence of data packets in the
forward direction, this sequence of dropped SACK packets
is the ONLY sequence of droppped SACK packets that will
result in an unnecessarily-retransmitted data packet. Given
a congestion window of at least eleven packets, what is the
chance that the sequence of dropped data packets is one that,
if accompanied by just the right sequence of dropped ACK
packets, would permit the sender to unnecessarily retransmit
a packet? And, given that pattern of dropped data packets,
what is the chance that the pattern of dropped ACK packets
is one that enables the sender to unnecessarily retransmit a
packet? For example, in this particular case, there are

patterns by which these seven SACK packets could or

4

could not be dropped on the path from the receiver to the
sender. What are the chances that the dropped packets will
be in exactly this one of the 128 possible patterns?

While we have not attempted a complete analysis of the
worst-case probabilities of unnecessarily retransmitted pack-
ets for TCP with SACK, we are convinced that the num-
ber of unnecessarily-retransmitted packets will be accept-
ably low, and that in any case the number of unnecessarily-
retransmitted packets is strictly less that that in correspond-
ing Tahoe and Reno implementations. We are aware of the
throughput degradation that is possible when the TCP sender
unnecessarily retransmits packets or cells (and have actually
written an entire paper on the subject, in the context of TCP
over ATM[RF95]).

4 Future research on congestion con-
trol algorithms

Clearly the use of the SACK option will open the way for
research on modifications to the TCP congestion control al-
gorithms, such as the FACK algorithm proposed by Matt
Mathis and Jamshid Mahdavi [add reference], or potential
proposals for the use of TCP with SACK over lossy links
such as wireless or satellite links. Any such modifications
to TCP's underlying congestion controls should, of course,
receive the close attention and review that would be received
by any other proposed modification to TCP's underlying con-
gestion controls.

5 Previous research on TCP with SACK

In this section we summarize other published work investi-
gating the performance of TCP with SACK.

Simulations in [Flo91] investigate the performance of TCP
with SACK (using the Reduce-by-Half window decrease al-
gorithm and the Increase-by-One window increase algorithm,
in the terminology of that paper) in scenarios with a num-
ber of active TCP connections with a range of round-trip
times and numbers of congested gateways. Figure 5 from
[Flo91], for example, shows the performance of TCP with
SACK in an environment with RED gateways. Figures 9-11
from [Flo91] considers the performance of TCP with SACK
with a ranqe of gateway queueing disciplines, for RED, Ran-
dom Drop, and Drop Tail gateways.

6 Conclusions

This note has addressed three possible concerns about the
effects of TCP with SACK and shown that the behavior of
TCP with SACK is unlikely to cause undesirable network
effects.

7 Acknowledgements

I have included contributions and ideas from Kevin Fall, Matt
Mathis, Jamshid Mahdavi, and Allyn Romanow. (That does
not necessarily mean that everyone acknowledged agrees with
everything in this document.)

References

[BBJ92] D. Borman, R. Braden, and V. Jacobson. TCP
extensions for high performance. Request for
Comments (Proposed Standard) RFC 1323, In-
ternet Engineering Task Force, May 1992. (Ob-
soletes RFC1185).

[FF95] K. Fall and S. Floyd. Comparisons of tahoe,
reno, and sack tcp. Technical report, 1995.
Available via http://www-nrg.ee.lbl.gov/nrg-
papers.html.

[FJ93] Sally Floyd and Van Jacobson. Random
early detection gateways for congestion avoid-
ance. IEEE/ACM Transactions on Network-
ing, 1(4):397–413, Aug 1993. Available via
http://www-nrg.ee.lbl.gov/nrg-papers.html.

[Flo91] Sally Floyd. Connections with multiple con-
gested gateways in packet-switched networks
part 1: One-way traffic. ACM Computer Com-
munication Review, 21(5):30–47, Oct 1991.

[Flo94] Sally Floyd. Tcp and successive fast retrans-
mits. Technical report, 1994. Available via
ftp://ftp.ee.lbl.gov/papers/fastretrans.ps.

[Jac88] V. Jacobson. Congestion avoidance and con-
trol. SIGCOMM Symposium on Communica-
tions Architectures and Protocols, pages 314–
329, 1988. An updated version is available via
ftp://ftp.ee.lbl.gov/papers/congavoid.ps.Z.

[MMFR95] Matthew Mathis, Jamshid Mahdavi, Sally
Floyd, and Allyn Romanow. Tcp selective ac-
knowledgement option. (Internet draft, work in
progress), 1995.

[RF95] Allyn Romanow and Sally Floyd. Dynam-
ics of tcp traffic over atm networks. IEEE
Journal on Selected Areas in Communica-
tions, 13(4), 1995. Available via http://www-
nrg.ee.lbl.gov/nrg-papers.html.

5

