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Abstract

The RED active queuemanagemeralgorithmallows net-
work operatordo simultaneouslhachiere high throughput
and low averagedelay However, the resulting average
gueuelengthis quite sensitve to the level of congestion
andto theRED parametesettingsandis thereforenot pre-
dictablein adwance. Delay being a major componentof
the quality of servicedeliveredto their customersnetwork
operatorsvould naturallylike to have arougha priori es-
timate of the averagedelaysin their congestedouters;to
achieve suchpredictableaveragedelayswith RED would
requireconstantuning of the parameterso adjustto cur
renttraffic conditions.

Ourgoalin this paperis to solve this problemwith min-
imal changego the overall RED algorithm. To do so, we
revisit the Adaptive RED proposabf Fenget al. from 1997
[6, 7]. We malke several algorithmic modificationsto this
proposalwhile leaving the basicideaintact,andtheneval-
uateits performancaisingsimulation.We find thatthis re-
visedversionof Adaptve RED, which canbeimplemented
asasimpleextensionwithin RED routers remoresthesen-
sitivity to parameterghat affect RED’s performanceand
canreliably achieve a specifiedargetaveragequeudength
in a wide variety of traffic scenarios.Basedon extensve
simulations,we believe that Adaptive RED is suficiently
robustfor deplgymentin routers.

1 Introduction

End-to-enccongestiorcontrolis widely usedin thecurrent
Internetto prevent congestiorcollapse.However, because
datatraffic is inherentlybursty routersareprovisionedwith
fairly large buffers to absorbthis burstinessand maintain
highlink utilization. The downsideof thesdarge buffersis
thatif traditionaldrop-tailbuffer managemeris usedthere
will be high queuingdelaysat congestedouters. Thus,
drop-tail buffer managementorces network operatorsto
choosebetweenhigh utilization (requiring large buffers),

or low delay(requiringsmallbuffers).

The RED buffer managemenalgorithm managesthe
queuein a more actve mannerby randomly dropping
paclets with increasingprobability as the averagequeue
sizeincreasesthe paclet droprateincreasesinearly from
zero,whenthe averagequeuesizeis at the RED parame-
ter minthresh(denotedby miny,), to adrop rate of maz,
whenthe averagequeuesize reachegnaxthresh(denoted
by maz,).t Oneof RED’s maingoalsis to usethis com-
binationof queuelengthaveraging(which accommodates
bursty traffic) andearly congestiomotification (which re-
ducesthe averagequeuelength)to simultaneoushachieve
low averagequeuingdelayandhighthroughput Simulation
experimentsand operationalkexperiencesuggesthat RED
is quite successfuin thisregard.

However, ashasbeenpointedoutin [18, 19, 20] among
otherplacespneof RED’s mainweaknesseis thatthe av-
eragequeuesize varieswith the level of congestionand
with the parametesettings.Thatis, whenthelink is lightly
congestedind/ormaxz, is high, the averagequeuesizeis
nearminyy,; Wwhenthelink is moreheavily congeste@nd/or
mazp is low, the averagequeuesizeis closerto, or even
above, maxy,. As aresult,theaveragequeuingdelayfrom
RED is sensitve to the traffic load andto parametersand
is thereforenot predictablen adwance.Delay beinga ma-
jor componenbf the quality of servicedeliveredto their
customersnetwork operatorsvould naturallylike to have
arougha priori estimateof theaveragedelaysin theircon-
gestedrouters;to achiere suchpredictableaveragedelays
with RED wouldrequireconstantuningof RED’s parame-
tersto adjustto currenttraffic conditions.

A secondfelatedweaknes®f RED is thatthe through-
putis alsosensitve to thetraffic loadandto RED parame-
ters. In particulay RED often doesnot performwell when
theaveragequeuebecomedargerthanmazyy,, resultingin
significantlydecreasedhroughputandincreasediropping

lIn RED’s gentlemode,which we emplg/ here, the droppingrate
increased$inearly from mazx, atanaveragequeuesizeof maz.p to 1 at
anaveragequeuesizeof 2 x maxip,.



rates. Avoiding this regime would againrequireconstant
tuningof the RED parameters.

Therehave beensereral proposaldor active queueman-
agemenschemesntendedo avoid these(andother)prob-
lems.We arecurrentlypreparinga detailedexaminationof
therelative performancef theseschemesHowever, all of
theseschemesepresensubstantiatieparturesrom theba-
sic RED design,andour purposenereis to look for amore
minimal changeto RED that canalleviate the problemsof
variabledelayandparametesensitvity mentionedabore.

We think that the basicinsight for sucha solutionlies
in the original Adaptive RED proposalof Fenget al. from
1997[6, 7]. This proposalretainsRED’s basicstructure
and merely adjuststhe parameternaz, to keepthe aver
agequeuesize betweenminy, andmaz,,. In this paper
we describea new implementatiorof Adaptive RED which
incorporateseveral substantiahlgorithmicchangego the
original Adaptive RED proposalwhile retainingits basic
intuition andspirit. In addition,this new Adaptive RED al-
gorithm automaticallysetsseveral other RED parameters;
operatorsneedonly setthe desiredtaiget averagequeue
length?

We have implementedthis revised proposalin the NS
simulator anddescribet here. This new versionof Adap-
tive RED achievesthetamgetaveragequeudengthin awide
variety of scenarioswithout sacrificingthe other benefits
of RED. This not only leadsto a morepredictableaverage
gueuingdelay but alsominimizesthe possibility of “over
shooting” maxyy,; thus, Adaptive RED reducesboth the
paclet lossrate andthe variancein queuingdelay Adap-
tive RED,thus,appearso solve theproblemof settingRED
parametersyhich hasbeenone of the banesof RED’s ex-
istence.

While the Adaptive RED algorithm appearsgpromising,
we male no claimsthatthis proposalis the only, or even
the best,way to solve the problemsaddressedhere. We
presenit asan existenceproof thatoneneednot abandon
thebasicRED designin orderto stabilizetheaveragequeue
lengthand“auto-tune”the otherRED parametersWe also
presenfAdaptive RED asaseriougproposafor deployment
in routers.Basedon extensve simulationgonly asubsebf
which we canreporton here),and on the fact that Adap-
tive RED represents smallchangeo the currentlyimple-
mentedRED algorithm,we believe thatthatAdaptive RED
is sufiiciently robustfor deplgyment.

This paperhas eight sections,starting with Section2
which discusseghe metrics and simulationscenariosve

2To avoid confusionand cumbersoméerminology in whatfollows
the term original Adaptive RED will refer to the proposalof Fenget
al. [6, 7] andtheterm Adaptive RED will referto the revisedproposal
describedhere.

usein evaluatingAdaptive RED. Section3 reviews some
preliminary simulationresultsthat illustrate RED’s sensi-
tivity to parametersandshav that Adaptive RED doesin-

deedaddresshisproblem.Sectiord describeshedetailsof

the Adaptive RED algorithm, including the automaticset-
ting for the parametersnaxthrestandw, (the queueaver-

aging constant).Simulationresultsof Adaptve RED in a
variety of settingsarepresentetéh Sections. Section6 dis-

cusseghe inherenttradeofs betweenthroughputand de-
lay, andthedifficult issueof determininghetamgetaverage
queuesize. Relatedwork is discussedn Section7 andwe

concluden Section8.

2 Metricsand Scenarios

In this sectionwe describehe metricsandtherangeof sce-
nariosthatwe usedin evaluatingAdaptive RED.

The primary goalsof RED, or of actve queuemanage-
mentin generalareto provide low averagequeuingdelay
and high throughput. Thus, for the evaluationsof Adap-
tive RED in this paperwe focus mainly on the metricsof
averagequeuingdelay andthroughput. RED also hasthe
secondangoalsof improving somevhatuponthe fairness
given by Drop Tail queuemanagemenrandof minimizing,
for a given averagequeuelength, the paclet droppingor
marking rate. We do not discussthe fairnessbehaior of
Adaptive RED, sincethis is quite similarto thefairnesse-
havior of RED. We only briefly considerthe drop-ratebe-
havior of REDandAdaptive RED, sincedegradeddrop-rate
behaior is generallyreflectedn degradedthroughput.

A few commentsaboutthesemetricsarein order First,
all of thesemetricsarerouterbased.While end-usemet-
rics, suchasfile transfertimes or perpaclet delays,are
importantmeasuresf analgorithms validity, theend-user
metricsof interestfor Adaptive RED canbefairly easilyde-
rivedfrom the routerbasedmetricswe presentandwe be-
lieve thatthe routerbasedmetricsgive moredirectinsight
into thedynamicsof AQM (Active QueueManagement).

Secondwe do not considemetricsrelatedto the worst-
casequeuingdelaysbecausét is not a goal of AQM to
controltheseworst-casalelays. We envision AQM asbe-
ing intendedmainly for traditionalbest-efort traffic, where
suchworst-casgyuaranteesannotbe providedwith simple
paclet multiplexing in arny case.To the extentthatworst-
casequeuingdelaysareneededthey arecontrolleddirectly
by configuringthequeues buffer sizeattherouter(andthus
areindependentf the AQM algorithm).

Third, we do not considermetrics directly measuring
queuelength oscillations. While there hasbeensubstan-
tial recentinterestin queuelengthoscillations(see for ex-
ample,[8, 13]), we do not think that suchoscillationsare



harmfulunlessthey increasehe averagequeuingdelayor
decreas¢hethroughputjn which caseheeffectswould be
measuredby our primarymetrics.We discusgheimpactof
oscillationson our primary metricsin Section5.1.

In evaluatingAdaptive RED, we have explored a wide
rangeof traffic scenariosandhave investigatedhe sensi-
tivity of Adaptive RED to our simulationparameters.To
verify robustnesswe have consideredoerformancefor a
rangeof workloads,levels of statisticalmultiplexing, and
levels of congestion. Workloadsinclude long-lived flows
and shortweb mice, alongwith reverse-pathraffic. The
presenceof datatraffic on the reversepathintroducesack
(acknavledgment)compressiorandthe loss of ack pack-
ets, therebyincreasingthe burstines<of the datatraffic on
the forward path. Reverse-patttraffic alsoforcesa range
of paclet sizeson the forward path, as the forward path
is now sharedbetweendataandack paclets. We alsoex-
plorescenariosvith changesn theworkloador in thelevel
of congestiorover the courseof the simulation. We have
looked at dynamicswith and without Explicit Congestion
Notification (ECN). Finally, we have consideredhe effect
of large window ad\ertisementsand different datapaclet
sizes. We do not have spacefor all of theseresultsin this
papeybut a morecompletedescriptionis availablein [10].

3 TheMotivation for Adaptive RED

Beforedelvinginto detailsof the designand performance
of Adaptive RED, which we describein Sections4 and5
respectiely, we first review somesimulationresultsillus-
trating RED'’s sensitvity to parametersand shaving that
Adaptive RED doesindeedaddresshis problem.This sec-
tion shavs simulationsllustratingRED’swell-knovn char
acteristicof the averagequeuesizeandperformancevary-
ing asafunctionof theRED parametersaz, andw,. This
sectionalsoincludessimulationresultswith Adaptive RED,
shawing that by adaptingmaz, to keepthe taget queue
sizewithin atargetrangebetweenmin, andmazxy,, it is
possibleo achiere thesameperformancef thatfrom RED
with avalueof maz, tunedfor thatsimulationscenarioin
otherwords, Adaptive RED successfully’auto-tunes’the
variousRED parameter$o achieve reliably goodresults.

Figuresl through3 shav a setof simulationswith a sin-
gle congestedink in adumbbelltopology with thenumber
of long-lived TCP flows rangingfrom 5 to 100. Thelong-
lived flows have a rangeof round-triptimes from 100 to
160ms,andthesimulationsncludewebtraffic andreverse-
pathtraffic. Thecongestedink is 15Mbps.

The simulationsin Figure 1 useRED with NS’s default
valuesof w, = 0.002 andmaz, = 0.1, andwith min,,
and mazxy, setto 20 and 80 paclets respectiely. RED

is run in gentlemodein all of thesesimulations. Each
crossshaws the resultsfrom a single simulation,with the
z-axis shaving the averagequeuingdelayin pacletsover

the secondhalf of the 100-secondimulation,andthe y-

axis shawing the link utilization over the secondhalf of

the simulation. Eachline shawvs resultsfrom simulations
with N flows, with linesfor valuesof N rangingfrom 5 to

100. The crosse®n eachline shaw the resultsof simula-
tionswith maz, rangingfrom 0.5ontheleft to 0.02onthe
right. Thepacletdropratein thesesimulationgangedrom

closeto zero(for the simulationswith five flows) up to 8%

(for the simulationswith 100 flows). As Figurel shaws,

the performancevariesboth with the numberof flows and
with maz,, with poorerthroughputfor thosesimulations
with a larger numberof long-lived flows. For thesesimu-
lations, increasingthe numberof flows decreasebnk uti-

lization, andincreasingnaz, leadsto lower queudengths.
Thedownturnin utilizationfor low valuesof maz, reflects
casesvherethe averagequeuelengthovershootsnazyy, a

significantportionof thetime.

As discussedater in Section4.3, the queueweight of
0.002is too large for a link bandwidthof 15Mbps, since
it only averageshe queuelengthover a fraction of a typ-
ical 100ms round-triptime. The simulationsin Figure 2
differ from thosein Figurel only in thatthey usew, setto
0.00027insteadbf 0.002.As is apparenfrom Figure2, and
discussednore thoroughlyin Section4.3, RED'’s perfor
mances bestwhentheaveragequeuesizeis estimatedver
asmallmultiple of round-triptimes,andnot over afraction
of a singleround-triptime. Figuresl and?2 are evidence
thatRED’s performancas sensitie to the value of the pa-
rameterw,. Figure 2 alsoshavs that non-adaptie RED
cangive quite goodperformancawvith this “good” valueof
wg, but thatthe averagequeuesizeandthroughputareboth
still a function of RED’s parameternaz,. In particulay
throughputsufiersin the simulationswhenmaz,, is small
relative to the steady-stat@aclet drop rate, andthe aver-
agequeuesize sometimesxceedsthe mazx,;, value of 80
paclets. Thus,achie&ing goodthroughputandreasonable
averagequeudengthswith RED requirescarefultuning of
bothw, andmaz,. It is this carefultuning that Adaptive
RED s designedo do automatically

While we have yet to describethe Adaptive RED algo-
rithm in detail (which we do in Section4), the generalde-
signof Adaptive RED canbe easilysummarizedssetting
wy automatically(basedon the link speed)and adapting
mazxp in responséo measuredueudengths.Later, in Sec-
tion 5 wewill exploretheperformancef Adaptive REDin
more detail, but for now we shav a few simulationsthat
suggesthatAdaptive RED doesindeedremore theneedto
carefullytunetheseRED parameters.



100

98

96

"5 flows" —=—
"10 flows"
"20 flows"
"30 flows" -
"40 flows" --x
"50 flows" ---x--

X
*%
*

9 |

92

Link Utilization

90 | "60 flows" -------
70 flows" - -x -
"80 flows" ----x---
"90 flows"

"1YOO flows"

88 |-

X” \ | |
40 50 60
Average Queue Length

86 1 1
10

70 920

Figure 1:
0.002.

100 T

Delay-Utilization Tradeof with RED, w, =

%8 e

96 -

94 |

"30 flows"

"40 flows" -
"50 flows" -
"60 flows" ---x---
"70 flows" ---
"80 flows" -
"90 flows"

"100‘flows“ e

20 30

92 |

Link Utilization
X K X X X X

90 |

88 |-

Il Il Il Il Il
40 50 60
Average Queue Length

86

10 90

Figure 2: Delay-Utilization Tradeof with RED, w, =

0.00026.
100.2 T T T
100 posssemsse—x 4
99.8 i
99.6 - y
5 5 flows™ —<—
o | -
g 994 10 flows" ---x---
N 99.2 H 20 flows" ------ ]
2 L 30 flows" -~ ,
2 99 "40 flows" -—x--
£ 98.8 | "50 flows" --->-- y
986 | "60 flows" ------ ,
. "70 flows" --->¢---
98.4 | "80 flows" ---->--- 7
L "90 flows" 4
98.2 "100 flows" ---x---
98 T T 1
40 42 44 46 48 50 52 54 56 58

Average Queue Length
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Figure 3 shavs the same simulationswith Adaptive
RED; in this graphthe variousvaluesof maz, aretheini-
tial values,and Adaptive RED adjuststhem, asdescribed
in 4, in responsdo measuredehaior. Note that the z-
andy-axesof Figure3 dont matchthoseof Figuresl and
2, so Figuresl1 and2 containa box shawving the areafor
Figure3. The entireregion depictedin Figure3 occupies
asmallareain the“good” performanceaegion of Figuresl
and2. As in the earliergraphsFigure 3 shaws theresults
from the secondhalf of a 100-secondimulation;the clus-
tering of the pointsfor a given curve shaws thatthe results
areessentiallyindependenof theinitial valueof mazx,,.

Thesesimulationsshav that Adaptive RED, in setting
wy automaticallyand adjustingmaz,, in responseo cur

rent conditions,is effective in achiezing high throughput
alongwith maintainingits averagequeuesize within the

tamgetintenal [44, 56]. Thisrangecorrespond$o thealgo-
rithm'’s requiremenbf maintainingthe averagequeuesize
within apre-determinedangearound(ming, +maz,) /2,

asexplainedin Sectiond. Theonly simulationswith anav-

eragequeuesizeoutsidethatrangearethosewith 5 flows;

thesesimulationshave few paclet drops,a smalleraverage
queueandfull link utilization.

The simulations with Adaptve RED all have high
throughputwith thethroughputangingfrom 98%upwards
(with 100 flows) to 100% (with 5 flows). For eachnum-
ber of flows, one could choosea static settingfor maz,
suchthat non-adaptie RED gives the sameperformance
as Adaptive RED. The catchis that this static settingfor
mazx, would have to be a function of the simulationsce-
nario. For example,for the simulationswith 20 flows, the
performanceof Adaptive RED correspondsoughlyto the
performanceof non-adaptie RED with maz, setto 0.07,
while for the simulationswith 100 flows, the performance
of adaptve RED correspondsoughly to the performance
of non-adaptie RED with maz, setto 0.2.
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Figures4 and5 shav the paclet dropratesfrom the sim-
ulationsin Figures? and3. They shav thatwhile bothRED
andAdaptive RED have roughlythesamepacletdroprates
for a particularsetof flows, Adaptve RED, by keepingthe



averagequeuesize away from maz,,, avoids the higher
pacletlossthatRED incurswhenthe averagequeuesizeis
aroundmazy,. We have alsoexploredfairness,andhave
verifiedthatthe fairnesspropertiesaresimilar in the simu-
lationswith RED andwith Adaptive RED.

We have exploredthesesimulationsfor a rangeof sce-
narios,including a rangeof link bandwidthsand mixes of
web traffic, with and without ECN, with the queuemea-
suredbothin unitsof pacletsandin unitsof bytes,andwith
RED in bytemode(takinginto accounthesizeof a paclet
in bytesin decidingwhetheror not to dropthe paclet) and
in pacletmode.In all of thesesimulationswe seethesame
goodperformancérom Adaptive RED.

3.1 lllustrating RED’s Varying Queue Size

The previous simulationsshaved the steady-stateerfor
manceof RED andAdaptive RED.We now investigatehowv
RED and Adaptive RED respondo a rapid changein the
congestiorlevel. The simulationspresentedhereillustrate
RED’s well-understoodlynamicof the averagequeuesize
varying with the congestionlevel, resultingfrom RED’s
fixed mappingfrom the averagequeuesizeto the paclet
droppingprobability For Adaptive RED, thesesimulations
focuson thetransitionperiodfrom onelevel of congestion
to another

Thesesimulationsusea simple dumbbelltopologywith

a congestedink of 1.5Mbps. The buffer accommodates

35 paclets,which, for 1500-bytepaclets,correspondso a
queuingdelayof 0.28secondsln all of thesimulationsw,
is setto 0.0027,minyy, is setto five paclets,andmazxyy, is
setto 15 paclets®

Forthesimulationin Figure6, theforwardtraffic consists
of two long-lived TCPflows, andthereversetraffic consists
of onelong-lived TCP flow. At time 25 twenty new flows
start,oneevery 0.1 secondsgachwith amaximumwindow
of twenty paclets. This is notintendedto modela realistic
load, but simply to illustrate the effect of a sharpchange
in the congestionlevel. The graphin Figure6 illustrates
non-adaptie RED, with the averagequeuesize changing
asa functionof the paclet droprate. Thedarkline shavs
theaveragegueuesizeasestimatedy RED, andthedotted
line shaws the instantaneougueue. The paclet drop rate
changedrom 1% over the first half of the simulation,to
12.6%over the secondalf, with correspondinghangesn
theaveragequeuesize.

The graphin Figure 7 shavs the samesimulation us-
ing Adaptive RED. Adaptive RED shaws a similar sharp
changen theaveragequeuesizeattime 25. However, after

3The valuesfor wq andmaz.,, areobtainedfrom the guidelinesin
Section4.3,while thevaluefor min,y, is apolicy choice.

roughly ten secondsAdaptive RED hasbroughtthe aver-
agequeuesize backdown to the tamget range,between9
and11 paclets. The simulationswith Adaptive RED have
a slightly higherthroughputthanthosewith non-adaptie
RED, (95.1%insteadof 93.1%), a slightly lower overall
averagequeuesize (11.5 paclets insteadof 13.4), and a
smallerpaclet drop rate. The simulationswith Adaptive
REDillustratethatit is possible by adaptingnaz,, to con-
trol therelationshipbetweertheaveragegueuesizeandthe
paclet droppingprobability and, thus, maintaina steady
averagequeuesizein thepresencef traffic dynamics.

Figure 8 shavs a relatedsimulation with twenty new
flows startingat time 0, andendingat time 25. The sim-
ulationwith non-adaptie RED in Figure 8 shavs the de-
creasdn the averagequeuesize asthe level of congestion
changest time 25. This time, the paclet drop rateswith
non-adaptie RED are9.7%over thefirst half of the simu-
lation,and.8% over thesecondalf.

Thereis a similar changein the averagequeuesizein
the simulationwith Adaptive RED in Figure9, but within
ten secondAdaptve RED hasbroughtthe averagequeue
sizebackto the taget range. The simulationwith Adap-
tive RED hasa similarthroughputo thatwith non-adaptie
RED, (93%insteadof 92.7%),anda slightly lower overall
averagequeuesize(11l.1pacletsinsteadof 12.4).

4 The Adaptive RED Algorithms

The overall guidelinesfor Adaptive RED asimplemented
herearethe sameasthosefor the original Adaptive RED
from [6], thatis, of adaptingmaz, to keepthe average
queuesize betweenming, andmazx,. Our approachdif-
fersfrom original Adaptive RED in four ways:

e maz, is adaptednot just to keepthe averagequeue
sizebetweenming, andmazxyy,, but to keepthe aver-
agequeuesizewithin atamgetrangehalf way between
ming, andmazyy, .

¢ max, is adaptedslowly, overtime scalegyreaterthan
atypicalround-triptime, andin smallsteps.

¢ maz, is constrainedo remainwithin therange[0.01,
0.5] (or equivalently [1%, 50%]).

e Instead of multiplicatively increasingand decreas-
ing mazx,, we usean additve-increasenultiplicative-
decreas¢AIMD) policy.

Thealgorithmfor Adaptive RED is givenin Figure10.
Theguidelineof adaptingnaz, slowly andinfrequently

allows the dynamicsof RED—of adaptingthe paclet-

droppingprobabilityin responséo changesn the average
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Every interval seconds:
i f (avg > target and maz, < 0.5)
I ncrease mamy:
MaL, < Maxy + a,
el seif (avg <target and maz, > 0.01)
decr ease maz,:
mazy < mazy * [,

Vari abl es:
avg: average queue size

Fi xed paraneters:
interval: time; 0.5 seconds
target: target for avg;
[ming, + 0.4 % (mazxy, — ming,),
ming, + 0.6 % (mazy, — ming,)].
a: increnment; min(0.01, mazxy/ 4)
p. decrease factor; 0.9

Figure10: The Adaptive RED algorithm.

gueuesize—todominateon smallertime scales Theadap-
tion of maz, is invoked only as neededover longertime
scales.

The robustnessof Adaptive RED comesfrom its slow
andinfrequentadjustmentsf maz,. Thepriceof thisslow
modificationis thataftera sharpchangen thelevel of con-
gestionasin Figures7 and9, it couldtake sometime, pos-
sibly tenor twenty secondsbeforemaz, adaptdo its newv
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value. To ensurethat the performanceof Adaptve RED
will not be unduly degradedduring this transitionperiod,
our third guidelinerestrictsmaz,, to staywithin therange
[0.01, 0.5]. This ensureghatduringthe transitionperiod
the overall performanceof RED shouldstill be acceptable,
eventhoughthe averagequeuesizemight not bein its tar
getrangeandthe averagedelayor throughpuimight suffer
slightly.

We do not claim thatour algorithmfor Adaptive RED is
optimal,or evencloseto optimal,but it seemgo work well
in a wide rangeof scenariosandwe believe thatit could
safelybedeplgred now in RED implementationin the In-
ternet. As aresultof the slow adaptatiorof maz,, the de-
sign of Adaptive RED givesrohust performanceén a wide
rangeof environments. As statedabove, the costof this
slow adaptationis that of a transientperiod, after a sharp
changen the level of congestionwhenthe averagequeue
sizeis not within the taget zone. Adaptive RED is thus
consciouslypositionedin the conserative, robust end of
the spectrunof AQM mechanismsyith the aim of avoid-
ing themorefinely-tunedbut alsomorefragile dynamicsat
themoreaggressie endof thespectrum.

Adaptive RED's algorithmin Figure 10 usesAIMD to
adaptmaz,. While we experimentedvith otherlinearcon-
trolssuchasMIMD (Multiplicative IncreaseMultiplicative
Decreasepswell asproportionalerror controls,as might
be suggestedby somecontrol-theoreti@analysespur expe-
rienceshave beenthatthe AIMD approachs morerobust.

This completeshe generaldescriptionof the Adaptive
RED algorithm. Embeddedn this algorithm are detailed



choicedor variousparametersWe now briefly justify these
choices.

4.1 Therangefor mazx,

The upperboundof 0.5 on maz, canbe justified on two
grounds. First, we are not trying to optimize RED for
paclet drop ratesgreaterthan 50%. In addition, because
weuseREDIn gentlemode thismeanghatthepacletdrop
ratevariesfrom 1 to maz, astheaveragequeuesizevaries
from ming, 10 mazxyy,, andthe paclet dropratevariesfrom
mazp t0 1 asthe averagequeuesize variesfrom maxyy,
to twice mazy,. Thus,with maz, setto 0.5, the paclet
dropratevariesfrom 0 to 1 astheaveragequeuesizevaries
fromminy, totwice max,y,. Thisshouldgive somevhatro-
bust performancesven with paclet drop ratesgreaterthan
50%. The upperboundof 0.5 on maz, meansthatwhen
the paclet drop rate exceeds25%, the averagequeuesize
couldexceedthetargetrangeby up to afactorof four.
Thelower boundof 0.01on mazx, is motivatedby ade-
sireto limit the rangeof mazx,. We believe that for sce-
narioswith very smallpaclet droprates RED will perform
fairly robustly with maz,, setto 0.01,andno oneis likely
to objectto anaveragegueuesizelessthanthetamgetrange.

4.2 Theparametersa and g3

We notethatit takesat least0.49/« intenals for mazx, to
increaserom 0.01to 0.50;this is 24.5secondgor our de-
fault parameter$or o andinterval (seeFigure10). Simi-
larly, it takesat leastlog 0.02/ log § intenals for mazx,, to

decreasdrom 0.50to 0.01; with our default parameters,

thisis 20.1seconds.Givena sharpchangefrom onelevel
of congestiorto another 25 secondss thereforean upper
boundon theinterval duringwhich the averagequeuesize
couldbeoutsideits tamgetrange andthe performancef the
AQM mightbe somevhatdegraded.

In recommendingraluesfor « and 8, we wantto en-
sure that under normal conditionsa single modification
of maz, doesnot resultin the averagequeuesize mov-
ing from above the tamget rangeto belaw it, or vice versa.
Let's assumefor simplicity that when maz, is adapted
the steady-stat@aclet droppingprobability p remainsthe
sameandtheaveragequeuesizeavg simply shiftsto match
the new value of maz,. Thus, assumingp < mazp,
whenmaz, increasesby «, avg canbe expectedto de-
creaserom ming, + mmp (maxy, — ming,) t0 ming, +

m(mamth — mingy,). Thisis adecreasef

*For maz:, = k ming,, thetarget queuesizeis £ miny,, and
with paclet drop ratesapproachingl00% and maz, setto 50%, the
averagequeuesizeapproache@max:n, = 2k min:s.
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(mazp + ) maz, (mazun —mini).

As long asthis is lessthan0.2(mazy, — ming,), the av-
eragequeuesize should not changefrom above the tar
get rangeto belaov the target rangein a single intenal.
This suggestchoosing—2%— mayTa) < 0.2, or equialently

a < 0.25 maz,. Ourde%aultsettlngof a (shavn in Figure
10) obgys this constraint.

Similarly, we have to checkthat the mutliplicative de-
creasef maz, doesnotcauseheaveragequeuesizeto go
from below to above the tamget rangeatfter a singleadjust-
mentof mazx,. A similaranalysisto thatfor oo shawvs that
aslongas

p(1—p)

— ming) < 0.2 — mi
maz,f (mazy, — ming,) (mazy, — ming,),

the averagequeuesize shouldnot changefrom belav the
talget rangeto above the tamget rangein a singleintenal.
This suggests:hoosing# < 0.2, or equivalently 5 >
0.83. Thisconstraints satisfiedoy our default valueof 0.9
for g (seeFigurel0).

4.3 Setting RED parametersmazy, and w,

As describedabore, Adaptive RED remoresRED’s depen-
denceontheparametefnaz,. Toreducetheneedfor other
parametetuning for RED, we alsospecify proceduregor
automaticallysettingthe RED parametersnaz;, andw,.

In automaticmodemazy, is setto threetimes ming,.
This follows the recommendations [9].° In this casethe
talgetaveragegueuesizeis centeredaround? x ming,, and
is thereforedeterminednly by the RED parameteminyy,.
Considerationén specifyingthe taiget averagequeuesize
arediscussedh Section6.

The guidelinesfor settingw, givenin the original RED
paper[12] arein termsof the transientqueuesizeaccom-
modatedby RED, andthe time requiredby the estimator
to respondo a stepchangen the actualqueuesize. From
[12], if thequeuesizechangedrom onevalueto anotheyit
takes—1/In(1 — wy,) pacletarrivalsfor theaveragequeue
to reach63%of thewayto thenew value. Thus,wereferto
—1/1In(1 — w,) asthe“time constant’of the estimatorfor
theaveragequeuesize,eventhoughthis “time constant’is
specifiedn paclet arrivalsandnotin time itself.

The default in the NS simulatoris for w, to be setto
0.002; this correspondgo a time constantof 500 paclet
arrivals. However, for a 1 Gbpslink with 500-bytepack-
ets,500paclet arrivals correspondso a smallfractionof a

5By chancewe haven't followed this recommendatiom all of the
simulationsin this paper but following the recommendatiomloesnot
changeourresults.



round-triptime (1/50-th of an assumedound-triptime of
100ms). Clearly higherspeedinks requiresmallervalues
for wg, so thatthe time constantremainson the order of
round-triptimes, ratherthanfractionsof round-triptimes.
Following theapproachén [15, 21], in automationodewe
setw, asafunctionof thelink bandwidth.

For RED in automaticmode,we setw, to give a time
constanfor theaveragequeusesizeestimatoiof onesecond;
thisis equivalentto tenround-triptimes,assuming default
round-triptime of 100ms. Thus,we set

wg =1 —exp(—1/0C) 1)
whereC is thelink capacityin paclets/secondgomputed
for pacletsof the specifieddefault size.

5 Simulations

Thesimulationsn Section3 suggesthatAdaptive RED, by
automaticallysettingw, and continually adaptingmaz,,
achieves the goals of high throughputand low average
gueueinglelaysacrossawide varietyof conditions.In this
sectionwe more closely examine three aspectsAdaptive
RED’s behaior: oscillations,effects of w,, andresponse
to routingdynamics.

5.1 Exploring Oscillations

Becauseof the feedbacknatureof TCP’s congestioncon-
trol, oscillationsin the queuelength are very common.
Some oscillationsare “malignant”, in that they degrade
overall throughputand increasevariancein queuingde-
lay; otheroscillationsare“benign” oscillationsanddo not
significantly effect eitherthroughputor delay Figuresll
through14 eachshaw the averagequeuesizefor a simula-
tion with 100long-lived flows, eachwith a round-triptime
of 250ms, and with a congestedink of 15Mbps. All of
the flows useECN and 1000-bytedatapaclets. The RED
gueuemanagemertiasming, = 20 andmaxy, = 80.
Thesimulationin Figure11, which usesRED, hasthree
factorsthat eachencouragescillationsin the queuesize:
(1) afixed (andoverly small) value for maz,; (2) a high
valuefor w,; and(3) asimpletraffic mix of one-way traf-
fic of long-lived flows. Figure 11 shavs dramaticoscilla-
tionsin theaveragequeuesize,with theaveragequeuesize
going belov ming, andaboe mazxy, in eachoscillation.
This leadsto oscillationsbetweenperiodsof high paclet
drop ratesand periodsof no paclet drops,and resultsin
degradedthroughputand high variancein queueingdelay
Exceedingmaz,, incursa non-linearityin the form of a
large paclet drop, with acorrespondinglecreasén utiliza-
tion, andforcesthe averagequeuesizeto decreassharply

in this case,belov min,. But whenthe averagequeue
sizefalls belov ming,, the averagepaclet drop probabil-
ity becomesero, andthe flows onceagainrampup their
congestiorwindows over the next few RTTs, therebysus-
taining the oscillations. In this case,RED achievesa link

utilization of 90%, anda high variancein queuingdelay

The paclet lossrateis about3.5%, even with the use of

ECN.

Figure12 shawvs thatsuchmalignantoscillationsaresig-
nificantlydampeneavith amorerealistictraffic mix includ-
ing reversepathtraffic andwebtraffic; thatis, evenwith a
badly tunedandnon-adaptie RED, mary of the worst ef-
fectsof theoscillationsaredecrease@henaslightly more
realistictraffic loadis used.

We now considerhowv Adaptve RED, with its lower
value for w, andits automaticallyadaptingmaz,, fares
in thesetwo traffic scenarios.Figure 13 shavs that even
with the simpletraffic mix of one-way, long-lived traffic,
Adaptive RED is ableto eliminatethe malignantoscilla-
tions,andturn theminto benignoscillations.Thus,in spite
of the high, fixed RTT of 250ms andwith neitherreverse
traffic nor webtraffic, Adaptive RED achievesa utilization
of 96.8%, anaveragequeuingqueuesizeoscillatingwithin
the tamget rangeof [44, 56] paclets,anda negligableloss
rate.(Recallthatthetraffic is usingECN.) We notethatma-
lignantoscillationspersistwith Adaptive RED if thelarger
valueof 0.002is usedfor w,; thatis, adaptingmaz, and
choosinga goodvaluefor w, areboth requiredfor elimi-
natingthe malignantoscillationsfor this scenario.

Figure14 shavs thatwith a slightly morerealistictraffic
mix, with web traffic andreversetraffic, the benignoscil-
lationsof Figure 13 have beenreplacedby moreirregular
variationsof the averagequeuesize, generallywithin the
taigetrangeof [44, 56] paclets. The utilizationin this case
is alsoslightly higherthanthatin Figurel3.

5.2 The Effectsof Queue Weight

While Figure 1 shaved the performancesosts,in termsof
decreasethroughputof too large a valuefor w,, this sec-
tion illustratesthe costs,in termsof increasedjueuingde-
lay, of too smallavaluefor w.

Figuresl5throughl7 shav theresultsof a simplesimu-
lation with two long-lived TCP flows, eachwith a round-
trip around45ms, competingover a 15Mbps link. The
secondTCP flow startsa time 2.5in a 10-secondsimula-
tion. With two TCPflows, the averagecongestiorwindow
shouldbearoundd5 paclets. All threesimulationsusenon-
adaptve RED,anddiffer only in w,. Thesesimulationsalso
illustrateoneof the costsof anoverly-smallvalueof wy, of
beingslow to respondo a large, sustainedncreasdn the
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Figure12: RED, richertraffic mix, w,=0.002.

instantaneougueue.

Thesimulationin Figure1l5usesRED with alargevalue
for w, of 0.002. All of the simulationsusethe automatic
settingsfor ming, andmaz,y,, resultingin miny, setto 19
pacletsandmazxy, setto 3miny,. Figurel5 shaws thein-
stantaneougueuesize,aswell asthe averagequeuesize
estimatedoy RED. Althoughthe secondTCP s cut off in
its slow-startslightly beforeit reachests desiredconges-
tion window in Figure 15, Figures15 and 16 both shav
reasonablgoodperformancdor this scenario.

In contrast,Figure17 shavs one of the costsof having
wq settoo small. In this simulationw, = 0.0001, with
theresultthat RED is slow to detecta suddenincreasen
congestionanddoesnot detectthe congestiorbuilding up
at time 2.5 until a queueof 350 paclets hashuilt up. In
this simulationthe sharpincreasen the queueis dueto the
slow-startof a singlehigh-bandwidthr CP flow, but thein-
creasecouldalsohave beendueto aflashcrowd, arouting
failure,or adenial-of-servicattack. This simulationis run
with alarge buffer size,allowing the spike in the queueto
reach350paclets. If thebuffer sizehadbeensmaller then
thesimulationwould simply have revertedto thetypical be-
havior of Drop-Tail queuemanagemenipf multiple pack-
etsdroppedrom awindow of data.We exploredarangeof
scenariosandin almostall casesgvenin steady-statsce-
narios,thelink utilization suferedwhenwe useda smaller
valueof w, thansuggestetby Equationl.

Time (in Seconds)

Figure14: Adaptive RED, richertraffic mix, w,=0.00027.

5.3 Simulations of Routing Changes

Thissectionexploresbriefly thetransienbehaior of Adap-
tive RED in ervironmentswith sharpchangesn the load
dueto routing changes. Figure 18 illustratesthe average
gqueuesizeasa function of time in a simulationwherethe
outputlink becomesunavailable from time 50 to time 60
(in seconds)Thesimulationtopologyincludesanalternate
pathwith alower precedencéut only half the link capac-
ity, sothe TCPconnectiongontinueto sendpacletsduring
thelink outage. Whenthe link comesbackup, the entire
loadis shiftedbackto theoriginallink. Thelink utilization
reaches8.3%over the 10-secongeriodimmediatelyfol-
lowing the repair and96.1%for the following 10-second
period. Thus,this scenariademonstratethe gooddynamic
behaior of Adaptive RED. More extensve resultsarepre-
sentedn [10].

6 Tradeoffs between Throughput and
Delay

Giventhe Adaptive RED algorithmandthe automaticset-
ting of maxthrestandw, describedkarlierin this papeythe
only critical parameteteft to specifyfor RED is thetamget
averagequeuesize. Adaptve RED maintainsan average
queuesizeof twice minthresh;itherefore givena targetfor
theaveragequeussize,settingminthreshs straightforvard.
Thehardpartis determininghedesiredaveragegueuesize.
The “optimal” averagequeuesizefor arouteris a func-
tion of therelative tradeof betweerthroughputanddelay
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andthis tradeof is necessarilya questionof policy. In ad-
dition, thesetradeofs betweerthroughputanddelayarea
function of characteristic®f the aggregatetraffic, in par
ticular of the burstinessof the aggrgate. Thus, scenarios
with one-way traffic, long-lived flows, shortRTTs, and a
high level of statisticalmultiplexing allow both very high
throughputandverylow delay while scenariosvith higher
burstinesshatresultsfrom two-way traffic andwebmiceor
scenariosvith low levels of statisticalmultiplexing require
somehardertradeofs betweerthroughputanddelay
Leaving behindtheissueof optimality, andfollowing Ja-
cobsonet al. in [15] andthe simulationscriptsin [11],
in automaticmodewe setminy, asa functionof the link
bandwidth. For slov and moderatespeedlinks, we have
foundthatsettingming, to five pacletsworkswell, sowe
continueto usethis asa lower boundfor min,, in auto-
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Figure 18: Average queue size variation with routing
change.

matic mode. For a high-speedink, however, an average
gueussizeof tenpacletsis very smallrelative to thedelay-
bandwidthproduct,andresultsin a severelossof through-
put.

Our rule of thumb for a plausible tradeof between
throughputand delay is to requirethat the averagequeu-
ing delay at a router be only a fraction of the end-to-end
round-trip time, using a default value of 100ms. Setting
ming, = M givesatargetaveragequeuingdelay
of delay;qrqe: S€CONdSfoOr C thelink capacityin pkts/sec.

We useadelayqrger Of 5ms,andin automationodewe set

ming, 10 Maz [5, M] paclets. This translatego

settingminthreshto 12.5pacletsfor a 10Mbpslink, andto
125 pacletsfor a 100Mbpslink. [10] reportson extensve
simulationsexploringthetradeofs betweerthroughputnd
delayin arangeof settings.

7 Reated Work

The parametesensitvity of RED hasbeendiscussedn a
numberof papersandwe briefly discusssomeof this re-
latedwork in this section. Thereis a growing body of re-
searchon AQM, and our paperbuilds upon obserations
from a rangeof this earlierwork. We do not attemptto
evaluateeachof theseproposalshere,but simply notethat
we don't believe that ary of theseproposalshasyet pre-
sentedhefull answerto the parametesensitvity of RED.
In particular we believe thatnoneof theseproposalshave
presenteda deplg/able mechanisnfor adaptingthe RED
parameternaz,. Similarly, for the proposalsnot based
uponRED, we do not believe thatary of thesehasyet pro-
vided a rolust, deplg/able proposalfor AQM for realistic
scenariosvith burstytwo-way traffic anda rangeof paclet
sizes.Someof theseproposalwwill beevaluatedin a sepa-
ratework.

The Adaptive RED proposaln this paperis basednthe
original Adaptve RED proposedoy Fenget al., in [6, 7],

10



of adaptingmax, asa functionof the averagequeuesize.
This original Adaptive RED adjuststhe paclet dropping
probability maz,, in RED to keepthe averagequeuesize
greatethanminthreshandlessthanmaxthreshlin particu-
lar, the original versionof Adaptve RED increasednaz,
multiplicatively whenthe averagequeuesize went belov
minthresh anddecreaseehaz, multiplicatvely whenthe
averagequeuesizewentabose maxthresh.

Jacobsoret al. in [15], a early draft of anin-progress
papey suggest self-tuningRED with the RED parameters
determinedy thebandwidthof theoutputlink. Otherpro-
posalsin [15] includesettingthe averagequeuesizeto the
instantaneougueuesizewheneertheinstantaneousizeis
lessthanthe average andsettingminthreshto 0.3 P.

Ziegler et al.[21, 22, 23] explore the stability of RED,
andrecommendaettingdor maz, sothattheaveragejqueue
size convergesto % In this papey we follow
their goal of loosely convemging to a certainqueuesize:
“we definecornvergencevery loosely as achigring a state
of boundedscillationof thequeue-sizearounda valuebe-
tweenminy, andmazy, sothattheamplitudeof the oscil-
lation of theaveragequeuesizeis significantlysmallerthan
mazy, — ming, andthe instantaneougueue-siz&éemains
greatethanzeroandsmallerthanthetotal buffersize”[21].
[21] recommendsettingsof ming,, maz,, wy, andmaz,
to achieve thesegoals. Ziegler et al. setw, asa function
of the link bandwidthto give a fixed time constantin of
onesecondor the estimator Ziegler et al. alsoshav that
theoriginal Adaptve RED from [6, 7] doesnotalwaysgive
goodperformance.

May et al.’s critical evaluationof RED in [18] summa-
rizesasfollows: “RED with smallbuffersdoesnotimprove
significantlythe performancef thenetwork”, and“param-
etertuningin RED remainsan inexact science put hasno
big impacton end-to-engperformance”.

Christianseret al.[5] evaluatedRED experimentallyin a
laboratoryscenariavith webtraffic with congestioronly in
the forward path,and concludedthat RED offers no clear
adwantageover tail-drop FIFO in termsof perconnection
responsdimesfor web users. The paperalsoreportsthat
performanceés quitesensitve to thesettingof RED param-
eters.

Misra etat. in [19] alsodiscusghedifficultiesin tuning
RED parameters.They illustratethe benignoscillationsin
theinstantaneougqueuesize,andsaythatthey arecurrently
investigatingtuning RED parametersHollot etal. in [13]
alsofocus on oscillationsin the queuesize, and usethis
startingpointto recommendaluesfor RED parameters.

Firoiu et al. in [8] alsoconsideregroblemswith RED
suchasoscillationsin thequeuesize,andmaderecommen-
dationsfor configuringRED parameterg8] recommended

that the ideal rate for samplingthe averagequeuesizeis
onceperround-triptime.

A numberof paperdave proposedalternateanechanisms
for actve queuemanagemenfTheseancludeOtt etal’s Sta-
bilized RED (SRED)[20], Lapsle et al’s RandomEarly
Marking(REM)[17, 4], Hollot etal.sProportional-Intgral
(PI) controller[14], andKunniyuretal!s AVG [16].Several
of theseproposalsshareAdaptive RED’s goal of keeping
a stableaveragequeuesize with changinglevels of con-
gestion. AVG tries to keepthe averagequeuesize small
evenduring high congestionandusesa token bucket with
afill ratelessthanthe link capacity The PI controlleris
primarily designedo avoid oscillationsin the queuesize.
SREDtacklesthe goal of stabilizingthe buffer occupang
by estimatingthe numberof active flows. Aweya et al’s
Dynamic-RED(DRED) [2, 3] alsohasthe goal of main-
taining the queuesizecloseto a thresholdvalue,anduses
a controllerthat adaptsthe paclet-droppingprobability as
a function of the averagedistanceof the queuefrom the
thresholdvalue.

8 Conclusions

In this papemwe have reportecon Adaptive RED, which, by
adaptingthe RED parametemaz, andautomaticallyset-
ting the RED parametersy, andmaz,,, maintainsa pre-
dictableaveragequeuesize andreducesRED’s parameter
sensitvity. Adaptive RED, however, leavesthe choiceof
thetalget queuesizeto network operatorasvho mustmake
a policy tradeof betweenutilization anddelay In future
work, we planto explore the useof Adaptive RED in vir-
tual queueswith the goal of providing very small average
queueingdelays. In this case the virtual queuewould be
configuredwith athroughputslightly lower thanthe actual
throughputof the link sothatthe queuingdelaywould be
determinedsolely by thetraffic burstiness.
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