
A Report on Some Recent Developments in TCP
Congestion Control

SallyFloyd

June5, 2000

Abstract

This paperdiscussesseveral changeseitherproposedor in
progressfor TCP congestioncontrol. The changesto TCP
includea Limited Transmitmechanismfor transmittingnew
packetson thereceiptof oneor two duplicateacknowledge-
ments,anda SACK-basedmechanismfor detectingandre-
spondingtounnecessaryFastRetransmitsorRetransmitTime-
outs. Thesechangesto TCParedesignedto avoid unneces-
saryRetransmitTimeouts,to correctunnecessaryFastRe-
transmitsor RetransmitTimeoutsresultingfrom reordered
or delayedpackets,andto allow the developmentof viable
mechanismsfor CorruptionNotification. The changesin
thenetwork includeExplicit CongestionNotification(ECN),
which is itself built upontheadditionof ActiveQueueMan-
agement.

1 Intr oduction

The basisof TCP congestioncontrol lies in Additive In-
creaseMultiplicativeDecrease(AIMD), halvingtheconges-
tion window for everywindow containinga packet loss,and
increasingthe congestionwindow by roughly onesegment
per RTT otherwise. A secondcomponentof TCP conges-
tion controlof fundamentalimportancein highly-congested
regimesis the RetransmitTimer, including the exponential
backoff of theretransmittimer whena retransmittedpacket
is itself dropped. The third fundamentalcomponentis the
Slow-Start mechanismfor the initial probing for available
bandwidth,insteadof initially sendingat a high rate that
mightnotbesupportedby thenetwork.

Within thisgeneralcongestioncontrolframeworkof Slow-
Start,AIMD, andRetransmitTimers,thereis awiderangeof
possiblebehaviors. Theseincludetheresponsewhenmulti-
plepacketsaredroppedwithin a round-triptime; theprecise
algorithm for setting the retransmittimeout; the response
to reorderedor delayedpackets; the sizeof the initial con-
gestionwindow; and so on. Thus, different TCP imple-
mentationsdiffer somewhat in their ability to competefor
availablebandwidth,However, becausethey all adhereto the
sameunderlyingmechanisms,thereis no bandwidthstarva-
tion betweencompetingTCP connections.That is, while
bandwidthis not necessarilysharedequallybetweendiffer-
entTCPimplementations,it is unlikely thatoneconformant

TCP implementationwill prevent anotherfrom receiving a
reasonableshareof theavailablebandwidth.

The changesto TCP discussedin this paperall adhere
to theunderlyingframework of Slow-Start,AIMD, andRe-
transmitTimers;thatis, noneof thesechangesalterthefun-
damentalunderlyingdynamicsof TCP congestioncontrol.
Instead,theseproposalswouldhelptoavoidunnecessaryRe-
transmitTimeouts,correctunnecessaryFastRetransmitsand
RetransmitTimeoutsthatresultedfrom reorderedor delayed
packets,andreduceunnecessarycosts(in delayandunnec-
essaryretransmits)associatedwith the mechanismof con-
gestionnotification.Theseproposalsarein variousstagesof
theprocessesof research,standardization,anddeployment.

Otherchangesto TCP’s congestioncontrolmechanisms
in variousstagesof deployment include larger initial win-
dows, andNewRenoTCP for greaterrobustnesswith mul-
tiple packet lossesin the absenceof the SACK option [4].
Changesto TCP’scongestioncontrolmechanismslargely in
theresearchstagesincludeACK filteringor ACK congestion
controlfor traffic onthereturnpath,arangeof improvements
to theSlow-Startprocedure,andrate-basedpacing[4]. Pro-
posalsfor greaterrobustnessagainstmisbehaving end-hosts
[17] wouldgiveprotectionagainstasingleendnode(e.g.,at
thewebclient) attemptingto subvert end-to-endcongestion
control,while not changingthecongestioncontrolbehavior
in thecaseof conformantend-nodes.

While EndpointCongestionManagement(ECM) does
not proposea changeto thecongestioncontrolmechanisms
for a singleflow, it doesproposea changeto thenumberof
individualtransferstreatedasasinglestreamin termsof end-
to-endcongestioncontrol.Otherproposalsfor moreexplicit
communicationbetweenthetransportlayerandthelink layer
below or the applicationlevel above (e.g., HTTP), or for
performance-enhancingproxies,would modify the context
of congestioncontrol,andnot its underlyingmechanisms.

Onethemeof thispaperis thatproposedchangestoTCP’s
congestioncontrolalgorithmstendtowardsincreasedrobust-
nessacrossa wide rangeof environments,ratherthanfine-
tuning for oneparticularenvironmentor traffic type at the
expenseof another.

A secondthemeof this paperis that many independent
changesarein progress,andevaluatingonechangerequires
taking into accountits interactionswith other changesin
progress.In additionto consideringthe impactof a partic-
ular changein TCPgiven thecurrentenvironment,with all

1



elseheldfixed,it is alsousefulto considerthepotentialim-
pactof a proposedchangesomeyearsdown theroad,when
otherchangesto TCPandto thenetwork arein place.

A third themeis that thereis unavoidableheterogeneity
in thecongestioncontrolbehaviorsof deployedTCPimple-
mentations,in part dueto the unevenprogressof proposed
changesto TCP from researchto standardizationto actual
deployment.As anexample,theSACK optionto TCP[15],
which allows morerobust operationwhenmultiple packets
arelost from a singlewindow of data,wasstandardized(as
ProposedStandard)in 1996. RFC 2488 recommends[5]
thatTCPimplementationsusetheSACK optionfor bestper-
formance.While SACK is deployed in roughly half of to-
day’swebbrowsers[2], it is notyet widely deployedin web
servers. This seemslikely to changesoon,asweb servers
begin to changeover to new operatingsystems.

2 Small Changesin TCP’sCongestion
Control Mechanisms

This sectiondiscussesseveral small changesto TCP’s con-
gestioncontrol mechanismsintendedto avoid unnecessary
RetransmitTimeoutsfor smalltransfers,andto improveper-
formancein environmentswith reordered,delayed,or cor-
ruptedpackets.Insteadof involving fundamentalchangesto
TCP’s congestioncontrol, thesechangeswould bring TCP
closer to its “pure” congestioncontrol behavior described
above of Slow-Start for startingup, AIMD for congestion
windowslargerthanonesegment,andtheexponentialback-
off of the retransmittimer for environmentsof heavy con-
gestion.

2.1 Avoiding UnnecessaryRetransmit
Timeouts

Retransmittimeoutsareanecessarymechanismof lastresort
in TCPflow control,usedwhentheTCPsenderhasnoother
methodfor determiningthat a segmentmustbe retransmit-
ted.Theexponentialbackoff of retransmittimersis a funda-
mentalcomponentof TCPcongestioncontrol,of importance
whenthecongestionwindow is at mostonesegment.How-
ever, when the congestionwindow is larger than one seg-
ment,TCPis ableto usethebasicAIMD congestioncontrol
mechanisms,andin thiscaseit wouldbepreferableto avoid
unnecessaryRetransmitTimeoutsasmuchaspossible.

CurrentTCP implementationshave two possiblemech-
anismsfor detectinga packet loss,FastRetransmitor a Re-
transmitTimeout.A TCPconnectiongenerallyrecoversmore
promptlyfrom a packet losswith FastRetransmit,inferring
apacket lossafterthreeduplicateACKshavebeenreceived.
WhenFastRetransmitis invoked, the TCP senderretrans-
mitsthesegmentinferredtobelost,andhalvesits congestion
window, continuingwith the datatransfer. If the TCP data
senderdoesn’t receive threeduplicateACKsaftera loss(for

example,becausethecongestionwindow waslessthanfour
segments),then the TCP senderhasto wait for a retrans-
mit timer to expire. Retransmittimeoutshave the cost of
introducinga possibly-considerabledelayof waiting for the
transmittimer to expire. This delaycanbeparticularlylong
in a short transfer, as the TCP senderhasnot yet received
sufficient samplesto estimatean effective upperboundon
theround-triptime.

Experimentalstudiesshow thattheperformancecoststo
small flows of unnecessarilywaiting for a retransmittimer
to expire canbe considerable[7, 8]. In onestudyroughly
56%of retransmissionssentby a busywebserver weresent
aftertheRTO expires,while only 44%werehandledby Fast
Retransmit[8]. Furthermore,onerecentstudyshowsthatfor
oneparticularwebserverthemediantransfersizeis lessthan
four segments,indicatingthatmorethanhalf of theconnec-
tionswill be forcedto rely on theRTO to recover from any
lossesthatoccur[2].

A numberof researchershaveproposedaLimited Trans-
mit mechanismwherethe sendertransmitsa new segment
afterreceiving oneor two duplicateACKs, if allowedby the
receiver’sadvertisedwindow [4]. Becausethefirst or second
duplicateACK is evidencethatapackethasleft thepipe,it is
conformantwith thespirit of thecongestionwindow to allow
a new packet to enterthepipe. BecausetheLimited Trans-
mit mechanismtransmitsa new packeton receiving thefirst
or secondduplicateACK, ratherthanretransmittingapacket
suspectedto havebeendropped,theLimitedTransmitmech-
anismis robust to reorderedpackets. TheLimited Transmit
mechanismallows TCPconnectionswith smallwindows to
recoverfrom lessthatafull window of packet losseswithout
a RetransmitTimeout. As discussedfurther in Section3.2,
the useof Explicit CongestionNotification (ECN) canalso
helpto avoid unnecessaryRetransmitTimeouts.

TheLimited Transmitmechanismhasbeensubmittedto
the IETF [3], andwe hopethat it will soonbecomean ac-
ceptedpart of the TCP specification. This shouldreduce
unnecessaryretransmittimeouts,while preservingthe fun-
damentalrole of retransmittimersin congestioncontrol for
regimeswheretheavailablebandwidthis atmostonepacket
perround-triptime.

2.2 ‘Undoing’ UnnecessaryCongestionCon-
tr ol Responsesto Reordered or Delayed
Packets

Thereare a numberof scenarioswherea TCP sendercan
infer a packet loss,andconsequentlyreduceits congestion
window, whenin fact therehasbeenno loss. Whenthe re-
transmittimer expiresunnecessarilyearly (that is, whenno
dataor ACK packethasbeenlost,andthesenderwouldhave
receivedacknowledgementsfor theoutstandingpacketsif it
hadwaitedalittle longer),thentheTCPsenderunnecessarily
retransmitsa segment. More importantly, anearlyRetrans-
mit Timeoutresultsin anunnecessaryreductionof thecon-

2



gestionwindow, astheflow hasnot experiencedany packet
losses.Similarly, whenFastRetransmitis invokedunneces-
sarily, afterthreeduplicateACKs have beenreceiveddueto
reorderingratherthanpacket loss,the TCPsenderalsoun-
necessarilyretransmitsa packet andreducesits congestion
window.

While it is nodoubtpossibleto fine-tuneTCP’sRetrans-
mit Timeoutalgorithmsto achieve animprovedbalancebe-
tweenunnecessaryRetransmitTimeoutsandunnecessaryde-
lay in detectingloss,it is not possibleto designRetransmit
Timeoutalgorithmsthatnever resultin anunnecessaryRe-
transmitTimeout.Similarly, while it is no doubtpossibleto
fine-tuneTCP’sFastRetransmitalgorithmto achieveanim-
proved balancebetweenunnecessaryFast Retransmitsand
unnecessarydelayin detectingloss,it is not possibleto de-
visea FastRetransmitalgorithmthatalwayscorrectlydeter-
mines,after the receiptof a duplicateACK, whetheror not
a packet losshasoccurred.Thus,it would be desirablefor
TCPcongestioncontrolto performwell evenin thepresence
of unnecessaryRetransmitTimeoutsandFastRetransmits.

For a flow with a large congestionwindow
�

, an un-
necessaryhalvingof thecongestionwindow canbeasignif-
icant performancepenalty, as it takesat least

�����
round-

trip timesfor theflow to recover its old congestionwindow.
Similarly, for an environmentwith persistentreorderingof
packetswithin a flow, or for anenvironmentwith anunreli-
ableestimatedupperboundon the round-triptime, this re-
peatedunnecessaryhalving of the congestionwindow can
haveasignificantperformancepenalty. A persistentreorder-
ing of packetsin aflow couldresultfrom changingroutes,or
from thelink-level retransmissionof corruptedpacketsover
a wirelesslink.

An initial steptowardsaddingrobustnessin thepresence
of unnecessaryRetransmitTimeoutsandFastRetransmitsis
to give the TCP senderthe informationto determinewhen
an unnecessaryRetransmitTimeoutor FastRetransmithas
occurred..Thisfirst stephasbeenaccomplishedwith theD-
SACK (for duplicate-SACK) extension[13] thathasrecently
beenaddedto theSACK TCPoption. TheD-SACK exten-
sionallowstheTCPdatareceiver to usetheSACK optionto
reportthereceiptof duplicatesegments.With theuseof D-
SACK, theTCPsendercancorrectlyinfer thesegmentsthat
have beenreceivedby thedatareceiver, includingduplicate
segments.

When the senderhasretransmitteda packet, D-SACK
doesnotallow TCPto distinguishbetweenthereceiptat the
receiver of both the original and retransmittedpacket, and
thereceiptof two copiesof theretransmittedpacket, oneof
which wasduplicatedin the network. If necessary, TCP’s
timestampoptioncouldbeusedto distinguishbetweenthese
two cases[6, 14]. However, in an environmentwith mini-
mal packet replicationin the network, D-SACK allows the
TCP senderto make reasonableinferences,one round-trip
timeafterapackethasbeenretransmitted,aboutwhetherthe
retransmissionwasnecessaryor unnecessary.

If theTCPdatasenderdetermines,around-triptimeafter
retransmittingapacket,thatthereceiverreceivedtwo copies
of thatsegmentandthereforethat thepacket retransmission
wasmostlikely unnecessary, thenthesendercouldhave the
option of “undoing” the halving in the congestionwindow.
Thesendercan“undo” therecenthalvingof thecongestion
window by increasingthe Slow-Start thresholdssthreshto
thepreviousvalueof theold congestionwindow, effectively
slow-startinguntil the congestionwindow has reachedits
old value. In additionto restoringthe congestionwindow,
theTCPsendercouldadjusttheduplicateacknowledgement
thresholdor theretransmittimeoutparameters,to avoid the
wastedbandwidthof persistentunnecessaryretransmits.

Thefirst partof this work, providing the informationto
thesenderaboutduplicatepacketsreceivedat thereceiver, is
donewith theD-SACK extension.Thenext stepis to evalu-
atespecificmechanismsfor identifyinganunnecessaryhalv-
ing of thecongestionwindow, andfor adjustingtheduplicate
acknowledgementthresholdor retransmittimeout parame-
ters. Oncethis is done,thereis no fundamentalreasonwhy
TCPcongestioncontrolcannotperformeffectively in anen-
vironmentwith persistentreordering.

2.3 Implications for Corruption Notification

Oneof thefundamentalcomponentsof TCPcongestioncon-
trol is that packet lossesareusedasindicationsof conges-
tion. TCP halvesits congestionwindow after any window
of datain which oneor morepacketshave beenlost. With
theadditionof ECN to theIP architecture,routerswould be
ableto seta bit in the ECN field in the IP headerasan in-
dicationof congestion,andendnodeswould beableto use
ECN indicationsasa secondmethodfor indicatingconges-
tion. However, the additionof ECN to the IP architecture
would not eliminatecongestion-relatedpacket losses,and
thereforewould not allow endnodesto ignorepacket losses
asindicationsof congestion.

For wired links, packet lossesdueto packet corruption
insteadof congestionareinfrequent;this is not necessarily
thecasefor wirelesslinks [10]. While many wirelesslinks
useForwardError Correction(FEC) andlink-level retrans-
missionto repairpacketcorruption,it is not alwayspossible
to eliminateall packetcorruptionin a timely fashion.

Onepossibleresponseto packetcorruptionwouldbefor
theTCPsenderto “undo” thecongestionwindow reduction,
if the TCP senderfound out, after the fact, that a single
packet losshadbeendueto corruptionratherthanconges-
tion. This late“undoing” of a congestionwindow reduction
couldusea delayednotificationof packet corruption,where
theTCPsenderreceivesthenotificationof corruptionsome
time after it hasalreadyretransmittedthepacketandhalved
thecongestionwindow.

Sucha mechanismfor the late “undoing” of a conges-
tion window reductionwould allow a link-level protocolto
develop a methodfor the delayedsendingof a corruption
notificationmessageto the TCP datareceiver. That is, the

3



link-level protocolcoulddeterminewhenthelink level is no
longerattemptingto retransmita packet hasbeenlost at the
link level dueto corruption.In thiscase,thelink-levelproto-
col couldarrangethatthelink-level sendersendacorruption
notificationmessageto the IP destinationof the corrupted
packet.Of course,thiscorruptionnotificationmessagecould
itself be corruptedor lost, in which casethe transportend
nodeswould beleft to their earlierinferencethatthepacket
hadbeenlostdueto congestion.

Thus,a TCP senderthat hashalved its congestionwin-
dow asa resultof a singlepacket losscould receive infor-
mationfrom the link level, sometime later, that this packet
waslostdueto corruptionratherthandueto congestion.Un-
fortunately, determiningtheappropriateresponseof theTCP
senderto packet corruptionis anopenquestion.For packet
corruptionthatis not anindicationof congestionfrom com-
petingtraffic, halvingthecongestionwindow in responseto
a single corruptedpacket seemsunnecessarilysevere. At
thesametime, maintaininga persistenthigh sendingratein
thepresenceof a high packet corruptionrateis alsoclearly
unacceptable;eachcorruptedpacket couldrepresentwasted
bandwidthon thepathto thepoint of corruption.If mecha-
nismsfor corruptionnotificationaredeveloped,a necessary
next stepwill be to determinethe appropriateresponseof
theendnodesto this corruption.Mechanismsfor protection
againstmisbehaving routersor receiversarelikely to bean-
otherprerequisitefor the furtherdevelopmentof corruption
notification.

3 Changesin the Network

TCP’s congestioncontrolbehavior is affectedby changesin
thenetwork aswell asby changesto theTCP implementa-
tionsat theendhosts.In this sectionwe discussthe impact
of ECN on TCPcongestioncontrol. BecauseECN depends
on the deploymentof Active QueueManagement,we first
considerthe impactof Active QueueManagementby itself
onTCPcongestioncontrolbehavior.

Theschedulingmechanismsusedin theroutersalsohave
a significantimpacton TCP’s congestioncontroldynamics.
In this paperwe limit our attentionto the environmentof
FIFOschedulingtypicalof thecurrentInternet.

3.1 ActiveQueueManagement

It haslong beenknown that Drop-Tail queuemanagement
canresultin pathologicalpacket droppingpatterns,particu-
larly in simplesimulationscenarioswith long-livedconnec-
tions, one-way traffic, andfixed packet sizes[11]. A more
relevant issuefor actualtraffic is that in environmentswith
small-scalestatisticalmultiplexing, Drop-Tail queueman-
agementcanresult in global synchronizationamongmulti-
ple TCPconnections,with underutilizationof thecongested
link resultingfrom severalconnectionshalvingtheirconges-
tion window at the sametime [18]. Thereis a tradeoff be-

tweenhigh throughputandlow delaywith any queueman-
agement,whetherit is Active QueueManagementsuchas
RED (RandomEarly Detection)or simple queuemanage-
mentsuchasDrop-Tail. However, asexperimentalstudies
haveconfirmed,with higherlevelsof statisticalmultiplexing
andtheheterogeneityof sessionstarttimes,round-triptimes,
transfersizes,andpacketsizestypicalof thecurrentInternet,
Drop-Tail queuemanagementis quitecapableof delivering
high link utilizationandlow overall responsetimes[9].

The main motivation for Active QueueManagementis
to controltheaveragequeueingdelaywhile at thesametime
allowing transientfluctuationsin thequeuesize[12]. For en-
vironmentswherelow per-packet delayandhigh aggregate
throughputareboth importantperformancemetrics,active
queuemanagementcanallow a queueto be tunedfor low
averageper-packet delaywhile reducingthe penaltyin lost
throughputthat might be necessarywith Drop-Tail queue
managementwith the sameaveragequeueingdelay. How-
ever, for environmentswhere the sameworst-case bound
on queueingdelayis desired,the lower averagequeuesize
maintainedby Active QueueManagementcancomeat the
costof a higherpacketdroprate.

In environmentswith highly bursty packet arrivals (as
would beencouragedby a scenariowith ACK compression
andACK losseson the returnpath),Drop-Tail queueman-
agementcanresultin anunnecessarilylargenumberof packet
drops,ascomparedto Active QueueManagement,particu-
larly with similar averagequeueingdelays. Assumingfull
link utilization, a higherpacket drop ratehave two conse-
quences,wastedbandwidthto thepointof loss,anda higher
variancein transfertimesfor theindividualflows.

Unnecessarypacket lossesresultin wastedbandwidthto
the point of lossonly with multiple congestedlinks, where
othertraffic couldhavemademoreeffectiveuseof theavail-
ablebandwidthupstreamof the point of congestion.Paths
with multiplecongestedlinks mightseemunlikely, giventhe
lackof congestionreportedwithin many backbonenetworks.
However, evenwith uncongestedbackbonenetworks,a path
with a congestedlink to the home,a congestedlink at an
Internetexchangepoint, anda congestedtransoceaniclink
wouldstill becharacterizedby multiplecongestedlinks.

Thesecondpossibleconsequenceof unnecessarypacket
lossesevenwith full link utilizationcanbeahighervariance
in transfertimes. For example,smallflows with an‘unnec-
essary’packet dropof the lastpacket in a transferwill have
a longwait for a retransmittimeout,while otheractiveflows
might have their total transfertime shortenedby onepacket
transmissiontime.

We would alsonotethat the bursty packet losspatterns
typical of Drop-Tail queuemanagementcanhave anunfor-
tunateinteractionwith RenoTCP, which hasperformance
problemswith multiple packetsdroppedfrom a singlewin-
dow of data. This negative consequenceof multiple packet
lossesbecomeslessrelevantasRenoTCP implementations
arereplacedwith NewRenoandSACK implementations,which

4



do not have the sameperformanceproblemswith multiple
lossesfrom a window of data.

3.2 Explicit CongestionNotification

ECN is specifiedin RFC 2481,and is currentlyan Exper-
imental addition to the IP architecture[16]. ECN allows
routersto set the CongestionExperienced(CE) bit in the
IP packet headerasan indicationof congestionto the end
nodesasanalternativeto droppingthepacket. ECN-capable
TCPconnectionsadvertisetheircapabilityfor ECNin theIP
header, and,in termsof congestioncontrol, respondto the
settingof the CE bit as they would to a packet loss. One
of the key advantagesof ECN will not be for TCP traffic,
but insteadfor traffic suchas real-timeor interactive traf-
fic, where the addedend-to-enddelay of retransmittinga
droppedpacket is undesirable.

To first order, TCP congestioncontrol dynamicswith
ECN aresimilar to thosewithout ECN, with the exception
that theTCPsenderdoesnot have to retransmitthemarked
packet (as it would if the packet had beendropped). For
example, ECN would meanshortertransfertimes for the
small numberof shortflows that might otherwisehave the
final packetof atransferdropped.Experimentalstudieshave
shown the performanceadvantagesof ECN for TCP short
transfers[1].

ECN andtheLimited Transmitoptionfor TCPcaneach
reduceunnecessaryRetransmitTimeoutsin TCP. As dis-
cussedin Section2.1, in the absenceof Limited Transmit,
a packet droppedfrom a TCPflow with a small congestion
window canresult in a RetransmitTimeout. Similarly, one
of advantagesof ECN with currentTCPimplementationsis
that, by replacinga packet drop by a packet mark, it can
avoid a retransmittimeout for a flow with a small conges-
tion window. We notethat,becauseLimited Transmitcould
sometimesavoid a RetransmitTimeoutin this caseeven in
the absenceof ECN, the deploymentof Limited Transmit
coulddiminishsomewhat theperformancebenefitsof ECN
for smallflows (by improving TCPperformanceevenin the
absenceof ECN, not by worseningTCP performancewith
ECN). Thus,someof the performanceadvantagesreported
for ECNfor TCPshorttransferswoulddiminishwith thein-
troductionof Limited Transmit.

Experimentalstudieshavealsoshown thatECNhasper-
formanceadvantagesfor long TCP transfers[1]. Oneper-
formanceadvantageis that ECN eliminatesthe delaysof
theFastRetransmitandRetransmitTimeoutprocedures,al-
lowing the TCP senderto immediatelybegin transmitting
at the reducedrate. ECN gives an explicit notification of
congestionthat is robust in thepresenceof reorderedor de-
layedpackets,anddoesnot rely on the uncertainduplicate
acknowledgementthresholdsor retransmittimeoutintervals
usedby TCPto detectlostpackets.

As notedearlier, ECN can not be relied upon to com-
pletelyeliminatepacket lossesasindicationsof congestion,
and thereforewould not allow the end nodesto interpret

packet lossesasindicationsof corruptioninsteadof conges-
tion. Similarly, ECN doesnot eliminatethe needfor Fast
Retransmitand RetransmitTimeout mechanismsto detect
droppedpackets,andthereforedoesnot eliminatethe need
for theLimited Transmitprocedurediscussedin Section2.1,
or theD-SACK proceduresdiscussedin Section2.2 for un-
doingunnecessarycongestioncontrolresponsesto reordered
or delayedpackets.

4 Conclusions

In summary, changesto TCParein progressthatwouldcon-
tinue to bring TCP’s congestioncontrol behavior closerto
thegoalof AIMD for largercongestionwindows,andexpo-
nentialbackoff of theretransmittimer for regimesof higher
congestion. Thesechangesinclude the Limited Transmit
mechanismto avoid unnecessaryRetransmitTimeouts,and
D-SACK-basedmechanismsto identify andreverseunnec-
essarycongestioncontrolresponsesto reorderedor delayed
packets. More speculative possibilitiesinclude corruption
notificationmessagesfor the link level to inform transport
end-nodesaboutpacketslost to corruptionratherthancon-
gestion.

At thesametime,changesin thenetwork areeitherpro-
posedor in progressto reduceunnecessarypacketlosses,and
to replacesomecongestion-relatedlossesby packetmarking
instead. Like the possiblechangesto TCP, thesechanges
would bring TCP’s congestioncontrolbehavior closerto its
desiredidealbehavior.

References

[1] U. AhmedandJ.Salim.PerformanceEvaluationof Ex-
plicit CongestionNotification (ECN) in IP Networks.
Technicalreport,Dec.1999.

[2] M. Allman. A Server-SideView of WWW Character-
istics. In preparation,May 2000.

[3] M. Allman, H. Balakrishnan,andS. Floyd. Enhanc-
ing TCP’s LossRecovery Using Early DuplicateAc-
knowledgmentResponse.Internetdraft draft-allman-
tcp-lossrec-00.txt,work-in-progress,Jun.2000.

[4] M. Allman, S.Dawkins,D. Glover, J.Griner, D. Tran,
T. Henderson,J.Heidemann,J.Touch,H. Kruse,S.Os-
termann,K. Scott, andJ. Semke. OngoingTCP Re-
searchRelatedto Satellites.RFC2760,February2000.

[5] M. Allman,D. Glover, andL. Sanchez.EnhancingTCP
Over SatelliteChannelsusing StandardMechanisms.
RFC2488,January1999.

[6] M. Allman and V. Paxson. On EstimatingEnd-to-
EndNetwork PathProperties.SIGCOMM Symposium
on Communications Architectures and Protocols, Aug.
1999.

5



[7] H. Balakrishnan.Challengesto ReliableDataTrans-
port over HeterogeneousWireless Networks, Aug.
1998.Ph.D.Thesis.

[8] H. Balakrishnan, V. Padmanabhan, S. Seshan,
S.Stemm,andR. Katz. TCPBehavior of a BusyWeb
Server: Analysisand Improvements. Proceedings of
the Conference on Computer Communications (IEEE
Infocom), Mar. 1998.

[9] M. Christiansen,K. Jeffay, D. Ott, and F. D. Smith.
TuningRED for WebTraffic. SIGCOMM Symposium
on Communications Architectures and Protocols, Sep.
2000.

[10] S. Dawkins, G. Montenegro, M. Kojo, V. Magret,and
N. Vaidya. End-to-endPerformanceImplicationsof
Links with Errors,Mar. 2000. Internet-draft,work in
progress.

[11] S. Floyd and V. Jacobson. On Traffic PhaseEffects
in Packet-SwitchedGateways. Internetworking: Re-
search and Experience, 3(3):115–156,Sep.1992.

[12] S. Floyd and V. Jacobson. RandomEarly Detec-
tion Gatewaysfor CongestionAvoidance.IEEE/ACM
Transactions on Networking, 1(4):397–413, Aug.
1993.

[13] S. Floyd, J. Mahdavi, M. Mathis, M. Podolsky, and
A. Romanow. An Extensionto the Selective Ac-
knowledgement(SACK) Option for TCP,Aug. 1999.
Internet-draft,work in progress.

[14] R. Ludwig. A Casefor Flow AdaptiveWirelessLinks.
Technicalreport,UC Berkeley, May 1999. Technical
ReportUCB//CSD-99-1053.

[15] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow.
TCPSelective AcknowledgmentOptions. RFC 2018,
Apr. 1996.

[16] K. K. RamakrishnanandS. Floyd. A Proposalto add
Explicit CongestionNotification (ECN) to IP. RFC
2481,Jan.1999.

[17] S.Savage,N. Cardwell,D. Wetherall,andT. Anderson.
TCPCongestionControlwith aMisbehaving Receiver.
ACM Computer Communication Review, Oct.1999.

[18] S. Shenker, L. Zhang,andD. Clark. SomeObserva-
tionson theDynamicsof a CongestionControlAlgo-
rithm. ACM Computer Communication Review, pages
30–39,Oct.1990.

6


