
This article was originally published in a journal published by
Elsevier, and the attached copy is provided by Elsevier for the

author’s benefit and for the benefit of the author’s institution, for
non-commercial research and educational use including without

limitation use in instruction at your institution, sending it to specific
colleagues that you know, and providing a copy to your institution’s

administrator.

All other uses, reproduction and distribution, including without
limitation commercial reprints, selling or licensing copies or access,

or posting on open internet sites, your personal or institution’s
website or repository, are prohibited. For exceptions, permission

may be sought for such use through Elsevier’s permissions site at:

http://www.elsevier.com/locate/permissionusematerial

http://www.elsevier.com/locate/permissionusematerial

Aut
ho

r's

pe
rs

on
al

co

py

Determining an appropriate sending rate
over an underutilized network path

Pasi Sarolahti a,*, Mark Allman b, Sally Floyd b

a Nokia Research Center, P.O. Box 407, FI-00045 Nokia Group, Helsinki, Finland
b ICIR/ICSI, 1947 Center Street, Suite 600, Berkeley, CA 94704-1198, USA

Available online 29 November 2006

Abstract

Determining an appropriate sending rate when beginning data transmission into a network with unknown character-
istics is a fundamental issue in best-effort networks. Traditionally, the slow-start algorithm has been used to probe the net-
work path for an appropriate sending rate. This paper provides an initial exploration of the efficacy of an alternate scheme
called Quick-Start, which is designed to allow transport protocols to explicitly request permission from the routers along a
network path to send at a higher rate than allowed by slow-start. Routers may approve, reject or reduce a sender’s
requested rate. Quick-Start is not a general purpose congestion control mechanism, but rather an anti-congestion control
scheme; Quick-Start does not detect or respond to congestion, but instead, when successful, gets permission to send at a
high sending rate on an underutilized path. Before deploying Quick-Start there are many questions that need to be
answered. However, before tackling all the thorny engineering questions we need to understand whether Quick-Start
provides enough benefit to even bother. Therefore, our goal in this paper is to start the process of determining the efficacy
of Quick-Start, while also highlighting some of the issues that will need to be addressed to realize a working Quick-Start
system.
� 2006 Elsevier B.V. All rights reserved.

Keywords: TCP; Congestion control; Explicit feedback

1. Introduction

A fundamental aspect of communication in gen-
eral-purpose, best-effort packet-switched networks
is determining an appropriate sending rate. The
appropriate sending rate depends on the character-
istics of the network path between the two peers

(bandwidth, propagation delay, etc.), as well as
the amount of load being placed on the network
by competing traffic at the given time. Traditionally,
TCP [20] has used a set of congestion control algo-
rithms for determining an appropriate sending rate
[11]. The rate is controlled using a congestion win-
dow (cwnd), which is an upper bound on the
amount of unacknowledged data that can be
injected into the network.

TCP’s traditional method for determining the
capacity of a network path with unknown charac-
teristics is to use the slow start algorithm [11], which

1389-1286/$ - see front matter � 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.comnet.2006.11.006

* Corresponding author. Tel.: +358 50 4876607; fax: +358 7180
36850.

E-mail addresses: pasi.sarolahti@iki.fi (P. Sarolahti),
mallman@icir.org (M. Allman), floyd@icir.org (S. Floyd).

Computer Networks 51 (2007) 1815–1832

www.elsevier.com/locate/comnet

Aut
ho

r's

pe
rs

on
al

co

py

initializes cwnd to between one and four segments
and then increases cwnd exponentially during each
subsequent round-trip time (RTT) of the connec-
tion. In the best case slow-start takes log2 N � 1
RTTs and requires sending N � 3 packets before
reaching a cwnd of N packets [11]. When there is
contention for resources along the network path,
slow start is a reasonable procedure. However, over
underutilized paths that could support large conges-
tion windows, possibly allowing an entire data
transfer to be sent in one RTT, slow start can take
much time, and require much data to be transmitted
before achieving the desired sending rate.

In this paper, we provide an initial investigation
of the usefulness of setting the initial sending rate
using Quick-Start, a mechanism that allows a sender
to advertise a desired sending rate, while the network
can approve, reject or reduce the requested rate.
While Quick-Start is designed to be used with a
range of transport protocols, in this paper we con-
sider its use with TCP. When using Quick-Start, a
TCP sender may use the SYN packet to advertise a
desire to transmit at X bytes/s. Each hop along the
path may (i) explicitly approve the rate request in
the SYN, (ii) explicitly reject the connection’s use
of a higher-than-standard initial sending rate, (iii)
reduce the rate from X to some X 0 or (iv) do nothing,
which implicitly prevents the connection’s use of a
higher-than-standard initial sending rate. Assuming
some rate request X 0 arrives at the receiver, that rate
is echoed back to the sender in the ACK of the SYN.
The sender can then determine if all routers along
the path approved the rate request, and if so, the sen-
der can fairly safely transmit at X 0 bytes/s. If the
request is rejected the sender will fall back to stan-
dard slow-start. As outlined in Section 3, routers
supporting Quick-Start do not reserve bandwidth,
and do not promise that the approved rate will be
available one round-trip time later. Rather, routers
‘‘allocate’’ aggregate Quick-Start bandwidth only
in the sense that this allocation is used by the router
in deciding whether to grant future Quick-Start
requests. Connections are not guaranteed the capac-
ity ‘‘allocated’’—though steps are taken in the allo-
cation process to try to make failure a rare event.

This paper makes a number of contributions, as
follows. (i) We present the first, if preliminary,
well-rounded evaluation of Quick-Start. (ii) While
alternate faster-than-slow-start schemes have been
proposed, Quick-Start is the first scheme to allow
a large data transfer in the first round-trip time after
connection set-up, explicitly involving all nodes

along a network path in arriving at an explicit
appropriate sending rate. (iii) We introduce the
notion of anti-congestion control. In other words,
Quick-Start only provides a quick check to deter-
mine whether a network with unknown conditions
is underutilized (uncongested) and permits a large
initial sending rate. Quick-Start does not attempt
to control the sending rate over the lifetime of a
connection, but rather yields to standard congestion
control for that task. (iv) We introduce and explore
the notion of rate requests for best-effort traffic.
(v) Because Quick-Start is so explicit and inclusive
in choosing an initial sending rate, the scheme can
serve as a baseline for evaluating alternate schemes.

This paper represents only a start to the evaluation
of the costs and benefits of Quick-Start. Before
Quick-Start could see wide use, a variety of questions
need to be answered. This paper makes some
assumptions that could not be made in the real world;
for example, while Section 7 briefly discusses deploy-
ment issues such as interactions with middleboxes, IP
tunnels, or non-IP queues, we do not address these
issues in this paper; these issues are discussed in some
detail in [9]. We investigate Web transfers, focusing
on medium-sized flows that are shown to get the most
benefit from using Quick-Start, and assume that the
TCP sender is able to determine the desired sending
rate for the Quick-Start request at the time when
TCP connection is being established, based on the
amount of data that is going to be sent. The assump-
tions made in the paper are not intended to minimize
the required effort needed to realize a working Quick-
Start system. Rather, the assumptions are part of the
process of understanding the potential usefulness of
Quick-Start separately from puzzling through the
array of details that need to be nailed down for a
Quick-Start deployment.

While our conclusion is that Quick-Start’s
benefits make it an attractive area for future work
we are not convinced that Quick-Start would be fea-
sible for the global Internet. However, many smaller
(but, not small) networks that are within a single
administrative domain—and therefore are not sub-
ject to the same concerns present on the global
Internet—may find Quick-Start to be an attractive
mechanism. For instance, [18] shows that within
one particular enterprise typical network utilization
is 2–3 orders of magnitude less than the raw capac-
ity of the network and therefore Quick-Start could
help applications to better use these untapped
resources. Further, [2] notes that within long-delay
satellite networks faster slow start is desirable.

1816 P. Sarolahti et al. / Computer Networks 51 (2007) 1815–1832

Aut
ho

r's

pe
rs

on
al

co

py

The rest of this paper is organized as follows.
Section 2 compares and contrasts Quick-Start with
related work. Section 3 details the Quick-Start
mechanism and discusses design issues. Section 4
describes the simulation setup used in our study,
and Section 5 illustrates the potential advantages
and disadvantages of Quick-Start. Section 6
discusses the handling of Quick-Start Requests by
routers. Section 7 briefly highlights deployment
issues, while Section 8 outlines possible vulnerabili-
ties of Quick-Start and discusses potential mitiga-
tions to the vulnerabilities. Finally, Section 9 offers
conclusions and on outline future work.

2. Related work

Quick-Start was first proposed in an Internet-
Draft [9]. The Internet-Draft provides a protocol
specification so that implementations can be built
and experiments conducted. In this paper we start
the process of evaluating Quick-Start, concentrating
more on the performance and algorithmic design
rather than on the details of the protocol design.

Sundarrajan [24] added Quick-Start support to
ns-2 and conducted an unpublished investigation
of Quick-Start as a class project, based on the pro-
posal in the initial Internet-Draft.

There have been a number of proposals for faster
variants of TCP slow-start that do not use explicit
feedback from routers. These mechanisms generally
fall into two categories: (i) using a small volley of
data packets to measure the available capacity over
a network path or (ii) leveraging the capacity found
by previous or concurrent connections to the same
peer.

SwiftStart [19] calls for starting slow-start as
usual and using packet-pair [14] with the first win-
dow of data packets to estimate the bottleneck
bandwidth. That estimate is then used to rapidly
increase the congestion window before the second
window of data is transmitted. While it is not clear
how accurate an estimate would need to be useful,
[4] suggests that using packet-pair to determine an
accurate estimate of the capacity within the first part
of a TCP connection is difficult. We also note that
accurate bandwidth estimation has been a popular
recent research topic and that the schemes that came
out of this work have largely required more than a
small handful of packets to obtain accurate esti-
mates of the path capacity [21].

The second class of mechanisms for faster slow-
start uses an assessment of the network path by con-

current or previous connections to the same peer.
Assume that some TCP connection has probed the
network path and is using a congestion window of
X segments. The essential idea behind this class of
mechanisms is that a subsequent connection which
starts right after the first connection might leverage
this information and use an initial congestion win-
dow of X segments as well. Further, if the connec-
tions are running in parallel then the connections
can share some global congestion window. TCP
Fast Start [17] and the Congestion Manager [5]
are examples of this class of mechanisms. Clearly,
if a connection starts and there is no history about
the peer this mechanism is of no benefit.

XCP (Explicit Control Protocol) [13] is a pro-
posal for a new congestion control mechanism
based on explicit and fine-grained per-packet feed-
back from the routers over the course of the entire
transfer. XCP is similar to Quick-Start in that the
routers are explicitly involved in feedback on the
senders’ allowed transmission rates, but the goals
of the two schemes are different. While XCP pro-
vides a full-fledged congestion control mechanism,
Quick-Start, in some sense, provides just the oppo-
site; Quick-Start provides for a brief check to deter-
mine whether a higher sending rate is allowed.
Quick-Start also requires less new state in routers
than XCP (which makes sense given the magnitude
of the tasks each performs). Also, XCP faces some
of the same challenges as Quick-Start (e.g., deter-
mining if all routers along some path support the
given mechanism). Quick-Start can also be viewed
as complimentary to XCP in that Quick-Start could
be used as part of the startup phase for XCP, allow-
ing a large initial sending rate and then transferring
control to XCP. Finally, Quick-Start could provide
useful data in the investigation of new, fine-grained
congestion control mechanisms.

Measurement-based admission control research
has investigated various algorithms at network
nodes for admitting or rejecting flows, when given
some Quality-of-Service requirements (see for exam-
ple [8]). Quick-Start solves a somewhat similar
problem in terms of the router algorithms for
approving Quick-Start requests. However, while
measurement-based admission control algorithms
are designed for implementing soft Quality-of-Ser-
vice based on some target parameters such as
bandwidth or packet loss rate, Quick-Start is a
light-weight mechanism specifically intended for
resolving the appropriate sending rate for a best-
effort flow on an underutilized path.

P. Sarolahti et al. / Computer Networks 51 (2007) 1815–1832 1817

Aut
ho

r's

pe
rs

on
al

co

py

There are several mechanisms for reserving per-
connection bandwidth along a network path (e.g.,
RSVP [7]). Quick-Start is lighter-weight in that it
does not guarantee a connection a certain amount
of bandwidth and does not consider requests for
bandwidth to be used over an extended period of
time. However, Quick-Start tries to make sure that
Quick-Start rate requests are only approved when
bandwidth is actually available (e.g., failures are
rare events). The Quick-Start approach is simpler
than an explicit reservation system, and we believe
it is more appropriate for Quick-Start’s goal of rate
requests for best-effort traffic in underutilized
environments.

Other mechanisms for explicit congestion-related
feedback from routers to end-nodes include Explicit
Congestion Notifications (ECN) [22], the only cur-
rent mechanism in the IP protocol suite for explicit
congestion-related feedback from routers to end-
nodes. Routers use the ECN field in the IP header
to indicate congestion explicitly, instead of relying
on packet drops. In contrast, the Anti-ECN [15]
and VCP [25] proposals would allow the sender to
increase as fast as slow-start over an uncongested
path, even in the middle of a transfer, with routers
setting a bit in the packet header to indicate an
under-utilized link.

3. Quick-Start

Quick-Start is a collaborative effort between end
hosts and routers. This section describes the details
of Quick-Start, and discusses the Quick-Start
requirements.

3.1. Quick-Start processing in end-hosts

The Quick-Start Rate Request is initialized by the
sender to the desired sending rate in bytes per sec-
ond (Bps). The sender also initializes a Quick-Start

TTL to a random value and saves the difference
between the initial Quick-Start TTL and the initial
IP TTL as TTLDiff. The requested rate and the
Quick-Start TTL are encoded in packet headers
and constitute the host’s request to the network.
As discussed in the following section, the routers
along the network path between the sender and
receiver alter the Request, as appropriate (see Sec-
tion 3.2 for details on this process). When the
Quick-Start Request arrives at the transport recei-
ver, the receiver echoes the rate request back to
the sender along with TTLDiff 0, the difference

between the Quick-Start TTL and the IP TTL, in
an option in the transport header. Upon reception
of an echoed Quick-Start Rate Request the sender
verifies that all routers along the path have
approved the Quick-Start Request by comparing
TTLDiff and TTLDiff 0. If these two values are the
same then the request was approved by all routers
in the network path; otherwise, data transmission
will continue using TCP’s standard algorithms.

When TTLDiff and TTLDiff 0match, the TCP sen-
der calculates the appropriate cwnd in bytes based
on the approved sending rate and measured
round-trip time as follows:

cwnd ¼ Rate �RTT � MSS

MSSþ H
; ð1Þ

where Rate is the approved rate request in Bps,
RTT is the recently measured round-trip time in sec-
onds, MSS is the maximum segment size for the
TCP connection in bytes and H is the estimated
header overhead for the connection in bytes. The
TCP sender paces out the Quick-Start packets
at the approved sending rate over the next RTT.1

Upon receipt of an acknowledgment for the first
Quick-Start packet, the TCP sender returns to
ACK-paced transmission.

One of the problems of Quick-Start is that unnec-
essary or unnecessarily-large Quick-Start Requests
can ‘‘waste’’ potential Quick-Start bandwidth—
even though routers do not make guaranteed reser-
vations for the ‘‘allocated’’ bandwidth. Routers
must keep track of the aggregate bandwidth repre-
sented by recently-approved Quick-Start requests
so that the router is not overly optimistic in approv-
ing future requests. As a result, each approved
request reduces the chances of approval for subse-
quent requests. Ideally, a sender should not use
Quick-Start for data streams that are not expected
to benefit from it, such as those with only a few
packets of data to send. The TCP sender should,
in theory, also avoid requesting an unnecessarily
high sending rate. However, it can be difficult for
the TCP sender to determine how much data will
ultimately be transmitted and therefore to form a
reasonable rate request. For example, in request-
response protocols such as HTTP [6], the server
does not know the size of the requested object dur-
ing the TCP handshake; it has not yet received the

1 Note that a TCP connection using Quick-Start needs to use a
timer for paced transmission. The granularity of the timer will
control the burstiness of the sender’s transmission.

1818 P. Sarolahti et al. / Computer Networks 51 (2007) 1815–1832

Aut
ho

r's

pe
rs

on
al

co

py

data request. Once the Web server does know the
requested object, the application can try to deter-
mine the size of the object, and then tell TCP how
many bytes will be sent; the objects are rarely writ-
ten to the TCP socket buffers in a single atomic call.
Even if the Web server went to all of this trouble,
with persistent HTTP connections there may still
be more data that the Web server does not yet know
about. Finally, sometimes the application cannot
even determine the size of an object because the
object is being read from a pipe or some live source.
In Section 5.2 we illustrate the problems of not mak-
ing a reasonably accurate rate request and offer
some strategies for coping.

3.2. Quick-Start processing at routers

A router that receives a packet with a Quick-
Start Rate Request has several options. Routers
that do not understand the Quick-Start Request
option simply leave the option untouched, ulti-
mately causing the Quick-Start Request to be
rejected because TTLDiff 0 will not match TTLDiff.
Routers that understand Quick-Start but do not
approve the request can leave the Quick-Start
Request option untouched, zero the Rate Request,
or delete the option from the IP header. Routers
that approve the rate in the request decrement the
Quick-Start TTL and forward the packet. Finally,
a router can approve a rate that is less than the rate
in the request by reducing the rate and decrementing
the Quick-Start TTL.

Routers should only approve a Quick-Start
Request when the output link has been underuti-
lized over some recent time period. In order to
approve a Quick-Start rate request, a router gener-
ally should know the bandwidth of the outgoing
link and the utilization of the link over a recent
period of time. At a minimum, the router also must
keep track of the aggregate bandwidth recently
approved for Quick-Start Requests, to avoid
approving too many requests when many Quick-
Start Requests arrive within a small window of time.
Section 6 discusses algorithms that could be used by
routers in approving or denying a Quick-Start
request.

Finally, as we have alluded to previously, we dis-
cuss router algorithms in terms of ‘‘allocating’’
capacity, but our notion of an ‘‘allocation’’ is quite
informal. Quick-Start routers do not in fact reserve
capacity for a particular flow and then police the
usage to ensure that the given flow is able to use

the granted capacity. Rather, the router simply
tracks the aggregate amount of promised capacity
in the recent past, in an effort not to promise more
than the output link can absorb. If, however, a burst
of unexpected traffic arrives, the Quick-Start ‘‘allo-
cations’’ may prove to be empty promises when
the end hosts attempt to use the granted bandwidth
and detect congestion. Because the ‘‘allocations’’ are
not hard guarantees that require enforcement, rou-
ters implementing Quick-Start are not required to
keep a burdensome amount of Quick-Start state
information. The required additional state at rou-
ters consists of only a handful of aggregate
measurements.

4. Simulation setup

In the following sections, we use the ns-2 simula-
tor [1] to explore Quick-Start. Unless otherwise
noted, the simulations presented in the remainder
of the paper use the scenario described here.

We use a network comprised of three routers,
R1–R3, arranged in a chain. The two links between
the routers each have bandwidth of Lbw and a
one-way link delay of Ld. Unless otherwise noted,
Lbw = 10 Mbps and Ld = 20 ms. The routers use
drop-tail queuing with a maximum queue size of
150 packets.

For most simulations, Web clients and servers
are connected to the ends of the network (to R1

and R3) with dedicated 1000 Mbps links with a
mean one-way link delay of 12 ms and a maximum
delay of 110 ms. The actual link delays are chosen to
give a range of round-trip times that roughly
matches those from measurements, using the pro-
cess from [10]. A varying number of Web servers,
N, are connected to R1 with a corresponding num-
ber of Web clients connected to R3. The measure-
ments presented in the subsequent sections refer to
the traffic from the Web servers connected to R1.
We also attach N/2 Web clients to R1 and N/2
Web servers to R3 to provide background traffic
on the return path. When Quick-Start is enabled,
all traffic attempts to use Quick-Start. The standard
Web traffic generator included with ns-2 is used in
our simulations, with the following parameter set-
tings: an average of 30 Web pages per session, an
inter-page parameter of 0.8, an average page size
of 10 objects. The Web object sizes are generated
using a ParetoII distribution with an average
parameter of 400 packets and shape parameter of
1.002. We use HTTP/1.0-like transactions, with

P. Sarolahti et al. / Computer Networks 51 (2007) 1815–1832 1819

Aut
ho

r's

pe
rs

on
al

co

py

one Web object per TCP connection. These param-
eters, particularly the average object size, are not
picked to match realistic traffic distributions, but
rather to explore Quick-Start’s impact on a wide
swatch of connection sizes, as Quick-Start is only
effective on connections that are larger than TCP’s
initial window. We also ran simulations with other
Web traffic and network parameters, and the obser-
vations were similar as discussed in Sections 5 and 6.
Our Web traffic simulations are run for 150 s, and
they were repeated 12 times (with means reported
in this paper).

A few simulations make use of a single transfer at
a time. These simulations use FTP to transfer a file
of a given size over the network given above with no
other traffic present.

Finally, all TCP connections use ns-2’s SACK
TCP with an initial cwnd of three segments (per
[3]), an MSS of 1460 bytes, an advertised window
of 10,000 segments,2 and the receiver acknowledg-
ing each segment.

Our simulation scripts will be released with the
final version of the paper.

5. Connection performance

In this section, we explore when Quick-Start is
and is not of benefit. We also consider how to
choose the Quick-Start request size, and explore
the implications of Quick-Start on aggregate net-
work traffic.

5.1. Ideal behavior

In an ideal Quick-Start scenario over an under-
utilized network path, the TCP sender would be able
to transmit much of its data in the initial congestion
window. Fig. 1 illustrates the ideal Quick-Start
behavior by displaying time-sequence plots of two
connections.3 In each case, the first connection is a
standard TCP connection that uses slow-start to
begin transmission (with an initial cwnd of three seg-
ments after the three-way handshake). In the top
graph, the second connection shows a connection
where an approved Quick-Start Request allows the
sender to transmit 25 of its 30 data packets in the ini-
tial window. When the first acknowledgment for

data arrives at the TCP sender, the data transmission
continues in slow-start, sending two packets for each
acknowledgment. The connection using Quick-Start
completes in just over half the time required by the
non-Quick-Start connection.

In the bottom graph, an approved Quick-Start
Request for 1 Gbps in a 10 Gbps network allows
the TCP sender in the second connection to send
all of its 10,000-packet transfer in the initial window.
The connection using Quick-Start completes the
data transfer in one round-trip time, compared to
the 12 round-trip times required by the non-Quick-
Start connection. This graph shows both the poten-
tial power and potential danger of Quick-Start. On
the one hand, the increase in performance is tremen-
dous. On the other hand, even though the Quick-
Start traffic is paced out over an RTT, the burst of
traffic could potentially have a large impact on com-
peting traffic if the approval of the Quick-Start
request was overly optimistic. However, when
repeating this simulation with 20 additional regular
TCP flows starting at 20 ms intervals and each send-
ing 5000 packets, the completion times for the
regular TCP flows were similar with and without
the use of Quick-Start by the 10,000-packet TCP

Fig. 1. TCP Slow-Start (left) vs. Quick-Start (right): (a) a
384 Kbps link and 1-s RTT and (b): a 10 Gbps link and 0.16-s
RTT.

2 This is high enough to make the advertised window a non-
issue in our simulations.

3 The top scenario was motivated by a GPRS/EDGE wireless
scenario [23].

1820 P. Sarolahti et al. / Computer Networks 51 (2007) 1815–1832

Aut
ho

r's

pe
rs

on
al

co

py

connection. Section 6 investigates Quick-Start’s
effect on competing traffic in the network in further
detail.

Fig. 2 shows the performance improvement from
using Quick-Start across a range of file sizes, in
terms of the transfer time of a single TCP connec-
tion. The simulations involve a simple scenario with
capacity set at 100 Mbps, various link delays, rou-
ters with unlimited buffers, routers willing to allo-
cate 90% of their capacity to Quick-Start requests,
and TCP making large enough Quick-Start
Requests to cover the whole link bandwidth. In each
simulation, only a single flow is active. The results
show that using Quick-Start aids performance—
especially for medium-sized transfers that are not
much larger than the approved Quick-Start request.
The plot shows that Quick-Start is less beneficial for
short transfers (e.g., small Web objects), because the
transfer time is already short without Quick-Start.
In addition, Quick-Start’s benefits drop off for long
transfers, where the initial startup phase is transient
and steady state behavior dictates the overall perfor-
mance. These results are similar to earlier results
from Sundarrajan [24]. In general, the optimal
Quick-Start behavior occurs when the Quick-Start
request results in an initial window N that covers
the entire transfer. In this case, a data transfer of
log2 (N + 2) � 1 round-trip times without Quick-
Start (with an initial window of two packets) is
reduced to a data transfer of a single round-trip
time with Quick-Start.

Fig. 3 shows a similar graph, but with an analyt-
ical estimate of the performance improvement pro-
vided by Quick-Start. The number of round-trip
times R required to transmit N packets of data is
approximated using Eq. (2), where W is the size of
the initial congestion window (from either Quick-
Start or from the default initial window), and M is

the delay-bandwidth product of the path. The num-
ber of round-trips R includes one round-trip for the
initial TCP SYN/SYN-ACK handshake. For
Eq. (2), we assume that the connection is the only
traffic, and that the routers each include a delay-
bandwidth product of buffering. As a result, once
the congestion window reaches the delay-bandwidth
product, the TCP connection continues to keep the
pipe full, transferring a delay-bandwidth product of
data for each time unit equal to the initial round-
trip time:

M ¼ bandwidth � RTT=packet size

R ¼ log2 max
minðN ;MÞ

W
þ 1; 2

� �� �
þ N

M

� � ð2Þ

Fig. 3 assumes a packet size of 1500 bytes, an initial
congestion window W of three segments without
Quick-Start, and an approved Quick-Start request
of 1.3 Gbps, the maximum request size allowed by
the specification [9]. Thus, Fig. 3 illustrates an upper
bound on possible improvement with Quick-Start-it
is not recommended that routers approve Quick-
Start requests equal to the entire link bandwidth.

5.2. The size of the Quick-Start request

We next consider how the sender chooses the
Quick-Start request size, and how the size of
Quick-Start requests affects the aggregate usefulness
of Quick-Start. An ideal Quick-Start request would
contain the precise sending rate the connection
could use. However, determining such a sending
rate is non-trivial and depends on a number of fac-
tors. A simple Quick-Start implementation for TCP
could send a fixed Quick-Start request each time a
request is transmitted. This would not be unreason-
able for initial Quick-Start requests, since in many

Transfer Length (KB)

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t (

%
)

0
10

0
20

0
30

0
40

0

10K 100K 1M 10M

1000 ms RTT
500 ms RTT
100 ms RTT
20 ms RTT

Fig. 2. Relative improvement with Quick-Start, for a single flow
over a 100 Mbps link, with a range of round-trip times.

Transfer Length (bytes)

R
el

at
iv

e
im

pr
ov

em
en

t (
%

) 100 ms RTT
50 ms RTT
10 ms RTT
1 ms RTT

0
20

0
40

0
60

0

10K 100K 1M 10M 100M 1G

Fig. 3. Upper bound for relative improvement with Quick-Start,
for a single flow over a 10 Gbps link, with a range of round-trip
times.

P. Sarolahti et al. / Computer Networks 51 (2007) 1815–1832 1821

Aut
ho

r's

pe
rs

on
al

co

py

cases the TCP sender has no knowledge about the
application or the network path when the TCP
SYN segment is sent.

To illustrate the problems caused by overly large
Quick-Start requests in environments with frequent
Quick-Start requests, we simulate two scenarios of a
Web traffic session, where a new TCP connection is
used for each Web object transferred, and each TCP
connection sends a Quick-Start request. In the
Greedy scenario, all TCP connections use a static
Quick-Start request of 2 MB/s, one-fifth of the
available bandwidth on the path. In contrast, in
the Ideal scenario, which is admittedly unrealistic,
each request is optimal for the amount of data its
connection has to transmit. In addition, Quick-Start
is not used in the Ideal scenario if the connection is
able to send all data in the standard three-segment
initial cwnd. The simulations use an average Web
object size of 60 packets.

In the Greedy scenario, because all connections
use a large, fixed-size Rate Request, requests are
generally granted for only the first connection in
each Web session. The router is generally unable
to approve requests of later connections in each
session, because the first connection is granted all
of the available Quick-Start bandwidth even though
the first connection cannot use such a large alloca-
tion. As a result, the extra allocation is ‘‘wasted’’,
in that subsequent Quick-Start requests are denied
unnecessarily. In this scenario, 9% of Quick-Start
requests are approved and 220 KBps of data is
transmitted during Quick-Start. In the Ideal sce-
nario, connections use ideal sizes for their Rate
Requests and requests are approved more often
since there are fewer wasted approvals. For the
Ideal scenario, 40% of Quick-Start requests are
approved and 769 KBps are transmitted during
Quick-Start, showing the increased overall effective-
ness of appropriately-sized Quick-Start requests.

While the Ideal scenario above is preferable, TCP
connections do not, in general, have enough infor-
mation to make ideal requests. However, there are
several ways systems can cope. First, if an end-host
is configured to understand the maximum capacity
of its last-mile hop,4 C bytes/s, requests could be
chosen to be no larger than C. Going even further,
large Web servers could make policy decisions to
disallow a single TCP connection from requesting

more than some fraction of the access link band-
width in a Quick-Start request. In addition, a sender
could take into account the size of the local socket
buffer, S bytes, and the receiver’s advertised win-
dow, W bytes, when choosing a request size.5 Given
an RTT of R seconds.6 TCP can send no faster than
min(S, W)/R bytes/s (assuming W is non-zero and
using S otherwise). Finally, and more speculatively,
if an application informs the sender of the size of a
particular object (when known), say O bytes, the
sender could request precisely the rate required to
transmit the object in a single RTT, with a request
of (O + (O/MSS)*H)/R bytes/s for a given MSS size
and estimated header size of H bytes. In our simula-
tions of the Ideal scenario, TCP senders use this
method to determine the size of the Quick-Start
request. While these techniques do not necessarily
provide for an ideal Quick-Start request, they could
well provide a more reasonable request than simply
picking a static rate for all cases.

When a packet sent as the result of an approved
Quick-Start Request is lost, we call this a Quick-

Start failure. This situation can arise for a number
of reasons, for instance because a burst of traffic
arrives at a router immediately after the router
approves a Quick-Start Request, or because a buggy
or broken router simply approves all Quick-Start
requests or mis-calculates the rate that should be
approved. After a Quick-Start failure, the TCP sen-
der disregards the cwnd determined using Quick-
Start, and uses slow-start to open cwnd just as
would have happened without Quick-Start.

5.3. Aggregate impact of Quick-Start

Because Quick-Start requests are only approved
when the output link is significantly underutilized,
Quick-Start should have little effect on the long-term
aggregate utilization and drop rates on a link. In par-
ticular, when link utilization is high, routers should
not approve Quick-Start requests; thus, Quick-Start
is not a mechanism designed to help a router main-
tain a high-throughput low-delay state on the output
link. In Section 6 we study methods for routers for
deciding whether to approve Quick-Start requests
and how much capacity to grant each request. We

4 A number of operating systems and applications already ask
users to configure such information (at least in broad terms) and
so this does not seem like an onerous expectation.

5 When sending a request in the initial SYN segment of a
connection the sender will not know the peer’s advertised
window.

6 Or, an approximation if the connection has not yet taken an
RTT measurement.

1822 P. Sarolahti et al. / Computer Networks 51 (2007) 1815–1832

Aut
ho

r's

pe
rs

on
al

co

py

also illustrate the implications of using Quick-Start
when the router is not significantly under-utilized.

For the traffic models used in this paper, the
amount of data requested by a user is independent
of whether Quick-Start is used, and independent
of the fate of the Quick-Start requests. While the
use of Quick-Start or particular allocations from
the routers will have an impact on the time required
for particular transfers, the aggregate amount of
data requested is not affected. Given this model,
although the use of Quick-Start might be of great
benefit to the individual user, Quick-Start should
have little effect on the long-term aggregate link uti-
lization or packet drop rates.

However, an alternate traffic model is possible,
where the successful use of Quick-Start would
increase the amount of data sent and received by
each user. For example, users could have a fixed
amount of time available for using the network,
rather than a fixed amount of data to send and
receive. In this case, the use of Quick-Start could
result in an increase in aggregate utilization in
under-utilized scenarios. Even in this case, however,
the use of Quick-Start should not affect the utiliza-
tion and loss rates over paths that are not under-uti-
lized, because in these scenarios Quick-Start
requests should not be approved by the routers.

Fig. 4 shows the overall utilization and aggregate
drop rates with and without Quick-Start, as a func-
tion of traffic load on the 10 Mbps shared link. For
each Web session, there are also ten FTP transfers
of a hundred packets each, starting at random
times. This traffic mix was chosen to have many
large Quick-Start requests, as something of a
worst-case scenario, to increase the chances of find-
ing a scenario where Quick-Start packets interfere
with the throughput or loss rates of other traffic
on the link. As shown in the figure, the link utiliza-
tion and drop rates are largely independent of
whether or not Quick-Start is employed. The line
labeled ‘‘QS Bandwidth’’ in the top graph of
Fig. 4 shows the bandwidth used by Quick-Start
packets in the simulations using Quick-Start—indi-
cating that Quick-Start is in fact being used in the
scenarios with less overall traffic. For the scenario
shown, the Web traffic generator uses a ParetoII dis-
tribution with an average parameter of 60 packets
for Web object size.

Fig. 5 shows packet loss rates for a scenario using
only Web traffic, for the following three simulations:
(i) all TCP flows use Quick-Start, (ii) 50% of the TCP
flows use Quick-Start and (iii) none of the flows use

Quick-Start. For simulation (ii) the plot shows the
drop rate for the Quick-Start and non-Quick-Start
flows separately. Additionally, the graph shows the
fraction of approved Quick-Start requests for simu-
lation (i) to give a feel for the actual Quick-Start
usage. The figure shows that the use of Quick-Start
does not have a significant effect on the packet loss
rates regardless of the amount of traffic attempting
to use Quick-Start. The packet loss rates have a
clearly increasing trend as the number of Web ses-
sions is increased. In addition, as the loss rates

2 5 10 20 50 100

0.
00

0.
02

0.
04

0.
06

0.
08

Web sessions

Lo
ss

 r
at

e

0
0.

2
0.

6
1

F
ra

ct
io

n
of

 Q
S

 R
eq

ue
st

s
A

pp
ro

ve
d

100% QS
50% QS
50% not QS
100% not QS
Approved

Fig. 5. Comparison of drop rates of regular TCP flows when half
of the flows either has Quick-Start enabled or disabled, with a
10 Mbps shared link.

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Web sessions

U
til

iz
at

io
n

Regular TCP
Quick–Start
QS Bandwidth

0 20 40 60 80 100

0.
00

0.
05

0.
10

0.
15

Web sessions

D
ro

p
ra

te

Regular TCP
Quick–Start

Fig. 4. Comparison of utilization and drop rates with and
without Quick-Start, with a 10 Mbps shared link.

P. Sarolahti et al. / Computer Networks 51 (2007) 1815–1832 1823

Aut
ho

r's

pe
rs

on
al

co

py

increase we note that the likelihood of Quick-Start
requests being approved decreases (as expected,
since Quick-Start is to be used in non-congested net-
works). Based on these simulations, Quick-Start
does not seem to be harmful to competing traffic in
the network (regardless of whether the competing
traffic uses Quick-Start).

Fig. 6 shows per-connection performance of all
traffic in a simulation with three Web servers. Each
point on the plot represents the duration of a single
connection, with the point type indicating whether
Quick-Start is used. The top plot shows the results
from a simulation run over a 10 Mbps link while
the bottom plot uses a 100 Mbps link. For medium
to large transfers the plots show that Quick-Start
improves performance—by a factor of 2 to 3 in
many cases, with larger savings over the higher
bandwidth path. The transfer duration shown in
the figure includes the time for the SYN exchange.
These plots show that even though the overall band-
width usage and drop rates are similar with and
without Quick-Start, the use of Quick-Start
increases per-connection performance.

6. Router algorithms

This section discusses several possible router
algorithms for considering Quick-Start requests.
We start with a basic algorithm that requires mini-
mal state, and proceed to an Extreme Quick-Start
algorithm that keeps per-flow state for approved
Quick-Start requests. It is desirable for routers to
be able to process Quick-Start requests efficiently.
At the same time, the Extreme Quick-Start algo-
rithm explores the ability of an ideal router to selec-
tively approve Quick-Start requests in order to
maximize the use of Quick-Start bandwidth by
end-nodes. Extreme Quick-Start is introduced as a
point of comparison and not as a proposal for the
way routers should handle Quick-Start.

6.1. Basic router algorithms

Quick-Start requests represent an increased
packet processing burden for routers, and this could
result in an increased end-to-end delay for packets
with Quick-Start requests. Therefore, it is important
that the algorithm for processing the Quick-Start
requests at routers be as efficient as possible, with
a small memory footprint. To know if there is suffi-
cient bandwidth available on the output link to
approve a Quick-Start request, the router needs to
know the raw bandwidth and have an estimate of
the current utilization of the link. The router also
has to remember the aggregate bandwidth approved
for use by end hosts in the recent past to avoid
approving too many requests and over-subscribing
the available capacity. That is, the router has to
keep a small amount of new state about the aggre-
gate traffic (with no per-flow state). In this section
we consider the algorithms used by routers to pro-
cess Quick-Start requests for point-to-point links;
algorithms for multi-access links are left as future
work.

The first router design choice concerns the rou-
ter’s method for estimating the recent link utiliza-
tion. There are a range of measurement and
estimation algorithms from which to choose, includ-
ing alternatives for the length of the measurement
period. We discuss two methods for estimating the
link utilization, the moving average and measuring
the peak utilization. Developing and assessing alter-
nate algorithms is an area for future work.

The moving average estimation technique uses a
standard exponentially weighted moving average
to assess the utilization over the recent past. This

2 5 10 20 50 100 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

File size (KB)

D
ur

at
io

n
(s

)

xx
x

x
x

x

xx

xx xxxxxxx xxxxxx x
x

x
x

xxxxx
x

x
x

x x
x

x xxx
x

x xx

x

xx x

x

x

x

x

x

xx

x x

xxx
x

xxx
x

xxxxxx
xx x x

x xxx x
x

xx
x x

x

x

xx
x x

x
x

xxx
x x

x
xx

x
x

x
x

x x
x

x
xxxxxxx

x
xx

x
xx xx

x
xxxxxx

xxxx
x

x
xx

x
x

x
xxxx xx

xx
xxxx

x
xxxx xxxx

x
x

x
x

x x
x

xx

xxxxxxx
x

xxx xx
x

xx

x x

x

x xx xx
x

xxxx

x

xx

x

x xxx x
xx x

x
x

xx
x

xxxxx
xx

xxx x
x

x
xx

x
x

x
x x xx

xx

x

xxxx xxxxx
x

xxxxx

x

x x

x

x

x xxx

x

x

x xxxx

x

xx x
x x

xx

x

xxx x
xx x

xx xx
x

xxx x
x

x xxxx
x xx

xxxx xx
x

xx xxxxx xxx
x

xxxxxx xxxx
x x x

xxxxx
x xx

xx
x

x
x x

xxx
xx

xx
x

xx x
x

x xxxxxx xxxxxx x
x

xxxxx
x

xxx xxxxx xx
x

xx
x

xx
x x

xxxxxxx
x

xx
x

x
x

xxxxxx
x

x xx x
x

xx
x

xxxxxxxxx xx
x

xxxxxx
x

x
x

x
x

xx
x

xx
x x

x
x

xxxxxxxx xx
x

x
x

xx xx
x

xx xxxx
xx

xxxx
x

xxx
x

xxx
x

xx
x

xx
x

xx x

x

xxxxx x
x

x xx
xx

x

x x
x

x

x xx xxxxxxxxxx xx

x

xx xx
xxx xx
xx

x
x xxxx x

x
xxx

x
xxx x

x
xxx

x
x

xx
xxx

x
xxxx x

x
xxxxxxxxxx

x
xxx xxxxxx xxxx x

x
x xxx xx

x
x

x
xx x

x
xx

x
xx

x xx x
xx

x
x

x xx
x xxx

x
xx

x
x

x x
xxx

x
xx

x x
xxxxxx

x
xx

xxx
xxxx

xx
xxx xx

x
x

x x

x

x

x
x

x
x

xxxx

x

x xxx x
x

x xxx
x

x
x x

x
x

xx
x xx

x
x

xxxx
x

xxx x
x

xxxx
x

xxxxxxxx
x

xxx
x

x
xx

x xx
x

xxxx
xx

xx
x

x
x x

xx xx x
x

x xx
x

xxxx
xx

xx
x

xxx xxx xxxx
x

x xx xxxxxx
x

xxx xxx xxxx xxxx
x

x
x x

xx
x

xx
x

x
x

xxxxxxxx
x

xxxxxx

x

x x

x

xxx

x

x

x

x
x

xx
x

x

x

x
x

x

x

x

x

x

x

x

xx

x

x
xx

xx
xx

xxx

x
Regular TCP
Quick–Start

2 5 10 20 50 100 200

0.
0

0.
2

0.
4

0.
6

File size (KB)

D
ur

at
io

n
(s

)

x
xxx xx

x
x

x x
xxxxxx

x
x

x
xx xx

x x
xxx

x
x x

x
xx

x
xxxxxxx xx

x
xxxx

x
x

xx
xx xxx

x
x

x x
xx

x
x

x
x xxx

x
x

x x
x xx

xx
x xxx

x
xx

x
xx x

x
xxxx

x
xx xxx

x
xxx

x
x

xx
x

x
xx

x
x

xx x xx
xx x

x
x

x
xx xx

x
xx xxxxxxx xxxxx

x x
xxxxxx x

x x
xxxxxxx x

x
x

x
xx

xx
xxx

xx
xx

x
x

xx
xxxxx

x
xxx x

x
xxxxxxxx xxx xxxxx

x
xxxx

x
xx

xx
xxxx

x
xx

x x
xx

x
x

x
xxx xxx

x
x xxx xx

x
x xx xx

x
x

x
xxxxxxx

x
xx xxx

x
x xxxxx

x
xx

x
xx

x
xxx

xx
xxxxxx xxx

x
xx

x
xx

x
x

x
x

x
xxx xxxx

x
x xxxx x

x
xxxxxx

x
xx

xx
xxxxxx xxxxx xxx

x
xx xxx

x
x

x
xxxxx

xx
xxx

x
xxxx x

x
xxxxxx

x
xxxx

x
x

x
x xx

x
xxx

x x
xxxx

x
xx

xx
xxxxxx xxxxx xxx

x
xx

x
x

x x
xx xxx

x
xxx

xx
xx

x
x x

x
x

x
xxxx xxx x

x
x x

x
xxx

x
x xx xxxxxxxx xx xxxx

x
x

x
xx x

x
xxx xxxx

xx x
x

x
x xxxxx x

x
xx xx

x
xx

x
xx

x
xx xxx

x
x

x
x xxx

x
xxxxx

xx
x xxx

xx
xxxxxx

x
xxxx xxx xxx

x xx
x

x
x

x
x

x
x

x
x

x
x

x x
x xx xxxxxx

x x
xx xxx

x
x

x
xxxx

x
xx xxx

x
x

x
x

xx
xxxxx

x
xx

x
xxx xxx

x
xxxxx

x
x

x
xx

x x
x x

x
xxxx

x
x

x
x xx

x
xx

x x
xx xxx

x
xx

x
xx xxx x

x
xx

x
xxx

x
xxx

x
x

x
xx

x x
x

xx x
xxxxx

x x
xxxxx x

x
xx x

x
x

x
xx

x
xx

x
x

x x
xx

x
x

xx
x

x
x

x
xx

x
xx

x
x

xx
x

x
x

x x
x

xx
x

xx
xxx

x
x

x
xx xxx xxxxxx x

x
xxxxxxxxx xxxxxxx xxxxx

x
xx

x
x

x
x

x xx
x

x
x

x
xx

xx
xxxx x

x
xx

x
xxxx

x
xxxxxx

x
xx

x
xx xxxx

x
xx x

xx
xx

x
xxxxxx xx

x
xx

xxx x
x

x
xxxx xxxxx

x
xxxx

x
x xxxx

x
x

x
x

x
x

x
xxxx

x
Regular TCP
Quick–Start

100 Mbps

10 Mbps

Fig. 6. Per-connection performance with and without Quick-
Start, with 10 Mbps and 100 Mbps shared links and three Web
sessions.

1824 P. Sarolahti et al. / Computer Networks 51 (2007) 1815–1832

Aut
ho

r's

pe
rs

on
al

co

py

scheme was originally used for Quick-Start in [24].
We define U(t) as the utilization estimate at time t,
M(t) as the link utilization measurement at time t,
d as the interval between utilization measurements,
and w as the weight for the moving average. The uti-
lization is defined as

Uðt þ dÞ w �Mðt þ dÞ þ ð1� wÞ � UðtÞ: ð3Þ

We note that the weight w should depend on the
interval d, so that the utilization is estimated over
the desired interval of time.

With peak utilization estimation, the router mea-
sures the link utilization over the most recent N time
intervals, and takes the highest of the N measure-
ments as the peak utilization. Thus, if each time
interval is s seconds, then the peak utilization
method takes the peak s-second link utilization
measurement over the most recent N*s seconds.
The peak utilization method reacts quickly to a sud-
den increase of link utilization, but also remembers
a period of high utilization in the recent past. Unless
otherwise noted, we use N = 5 intervals with inter-
val length of s = 150 ms, which covers most of the
RTTs in our simulated network.

In addition to the two methods for estimating
link utilization, we consider how to decide whether
to approve a given Quick-Start request and how
much capacity to grant in an approval. This process
relies on knowing recent_qs_approvals, the aggre-
gate bandwidth promised in recently-approved
Quick-Start requests—ideally over a time interval
at least as long as typical round-trip times for the
traffic on the link. If the time interval for this assess-
ment is too small, then the router forgets recent
Quick-Start approvals too quickly, and could
approve too many requests, thus over-subscribing
the available bandwidth. On the other hand, if the
time interval is too large, the router errs on the con-
servative side and remembers recent Quick-Start
approvals for too long. In this case the router
counts some of the Quick-Start bandwidth twice,
in the remembered request and also in the measured
utilization, and as a result may deny subsequent
Quick-Start requests unnecessarily. Unless other-
wise noted, we compute recent_qs_approvals as the
aggregate Quick-Start bandwidth approved in the
most recent two 150-ms intervals, including the cur-
rent interval.

The Target algorithm, given in Fig. 7, approves
Quick-Start requests only when the link utilization,
including the potential bandwidth use of recently-
granted Quick-Start requests, is less than some con-

figured percentage of the link’s bandwidth, denoted
qs_thresh. This gives a router direct control over the
notion of ‘‘significantly under-utilized’’. When a
Quick-Start request is approved, the approved rate
is reduced, if necessary, so that the total projected
link utilization does not exceed qs_thresh.

Fig. 8 shows simulations with the Target algo-
rithm. The simulations use a range of values for
the qs_thresh parameter in the Target algorithm.
In these simulations, the Target algorithm uses the
peak utilization method for estimating link utiliza-
tion. The top graph of Fig. 8 shows the overall link
utilization for each simulation. The middle graph
shows the fraction of Quick-Start Requests
approved. Finally, the bottom plot shows the frac-
tion of Quick-Start failures. We note that the frac-
tion of failures for the Target algorithm is
relatively small (less than 1% in all cases tested).

Fig. 9 compares the moving average and peak
utilization methods for estimating link utilization.
The simulations use the Target algorithm with a
10 Mbps shared link and a qs_thresh of 90%. The
top graphs show the fraction of Quick-Start
requests approved, and the bottom graphs show
the fraction of approved Quick-Start requests with
dropped packets. The moving average simulations
were run with a range of values for the weight w,
and the peak utilization simulations were run with
a range of values for the number N of 150-ms inter-
vals over which the peak utilization was chosen. The
legend in each figure shows the overall time interval
for the estimation; for the moving average graph,
this is estimated as the time needed for �1/ln (1 � w)
measurements, where a measurement is taken for
each departure from the queue [26].

As Fig. 9 shows, the approval rate of Quick-Start
requests can be slightly higher with the moving aver-
age method, but the failure rate is higher also,
regardless of the value for the weight w. The weight

util_bw = bandwidth * utilization;
util_bw += recent_qs_approvals;
if (util_bw < qs_thresh * bandwidth) {
 // Approve Quick-Start Request
 approved =
 qs_thresh * bandwidth - util_bw;
 if (rate_request < approved) {
 approved = rate_request;
 }
 recent_qs_approvals += approved;
}

Fig. 7. The Target algorithm for processing Quick-Start requests.

P. Sarolahti et al. / Computer Networks 51 (2007) 1815–1832 1825

Aut
ho

r's

pe
rs

on
al

co

py

controls the time interval over which the link utiliza-
tion is estimated, but the moving average method
still estimates the average utilization. The moving
average does not take into account the variance of
traffic intensity that can be present. A router that
does not want even transient congestion should
not estimate the average link utilization since this
will likely lead to Quick-Start failures.

For the simulations with the peak utilization
method, on the other hand, the Quick-Start failure
ratio is generally lower than with the moving aver-
age method. However, the performance is sensitive
to the number N of intervals used. Larger values
of N lead to lower acceptance rates, but also to
lower failure rates in congested environments. This
illustrates a potentially tricky balancing act in deter-

mining the larger time period over which link utili-
zation is measured, and in determining the interval
for assessing peak utilization within the larger time
period.

6.2. Extreme Quick-Start in routers

We use the term Extreme Quick-Start for a
Quick-Start router that maintains per-flow state
about Quick-Start requests, and the term Basic

Quick-Start for a Quick-Start router that does not
maintain per-flow state, but follows the algorithms
in the section above. While Extreme Quick-Start is
not necessarily realistic in practice, it allows us to
analyze how much Quick-Start performance could
be improved if router efficiency was not a limiting
factor. For example, a single Extreme Quick-Start
router could perform the following actions, even if
it was the only Extreme Quick-Start router in the
network:

• A router could keep track of individual approved
Quick-Start requests, and note when the Quick-
Start bandwidth resulting from that request
begins to arrive at the router (if in fact it does).
This allows the router to more accurately esti-
mate the potential Quick-Start bandwidth from
Quick-Start requests that have been approved
but not yet used at the end nodes.

• A router could keep track on the fairness of
Quick-Start request approvals. If it appears that
there are a number of requests that are not
approved because earlier requests have been
granted all of the available Quick-Start band-
width, the router could reduce the rate approved
for individual requests in order to achieve better
fairness between flows.

It is useful for an Extreme Quick-Start router to
know the RTTs of flows, in order to set the length of
the interval for measuring the arrival rate of packets
from a flow after an approved Quick-Start request.
There are a number of techniques for routers to esti-
mate flows’ RTTs [12]. In the analysis below, we
assume that the Extreme Quick-Start router imple-
ments a reliable method for evaluating RTTs.

For each flow, an Extreme Quick-Start router
estimates the number of bytes expected to arrive
in the Quick-Start phase, based on the approved
rate request and the estimated RTT. The Extreme
Quick-Start router also checks the reports of
approved rate from senders, and maintains the

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Web sessions

U
til

iz
at

io
n

TARGET: 0.95
TARGET: 0.90
TARGET: 0.85
TARGET: 0.65
No QS

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Web sessions

Q
S

 R
eq

ue
st

s
A

pp
ro

ve
d

(f
ra

ct
io

n)

TARGET: 0.95
TARGET: 0.90
TARGET: 0.85
TARGET: 0.65

0 20 40 60 80 100 120

0.
00

0
0.

01
0

0.
02

0
0.

03
0

Web sessions

Q
S

 F
ai

lu
re

s
(f

ra
ct

io
n)

TARGET: 0.95
TARGET: 0.90
TARGET: 0.85
TARGET: 0.65

Fig. 8. Evaluation of target algorithm.

1826 P. Sarolahti et al. / Computer Networks 51 (2007) 1815–1832

Aut
ho

r's

pe
rs

on
al

co

py
number of received bytes for each flow. From this
information the router can compose a detailed esti-
mate of currently unused Quick-Start bandwidth,
more accurately establishing how much bandwidth
is available for new rate requests. As Basic Quick-
Start does not track per-flow state but only main-
tains aggregate information, Basic Quick-Start is
more conservative in its estimation of the available
bandwidth. After the initial window of Quick-Start
data has arrived at a router, there is a period of time
where some data is counted twice; recent_qs_approv-

als accounts for bandwidth that has been promised
for Quick-Start requests, while the packets that have
arrived are also accounted for in the link utilization.
Extreme Quick-Start aims to remove this overlap,
resulting in both a higher acceptance rate for the
Quick-Start requests, and approvals of higher
Quick-Start bandwidth.

We use two examples to illustrate the difference
between Basic Quick-Start and Extreme Quick-Start.
Fig. 10 compares Basic Quick-Start and Extreme
Quick-Start for scenarios with a small range of RTTs
(80–120 ms), with the assumption in this scenario that
the RTTs are known (or easily guessed) by the router,
and the router can accurately set recent_qs_approvals

to roughly match the round-trip time (100 ms). In
these simulations, Basic Quick-Start uses the Tar-
get algorithm with the peak utilization method. From

the top plot we see that the link utilization is nearly
the same regardless of whether the routers use Basic
or Extreme Quick-Start. However, the bottom figure
shows that the fraction of bytes transmitted using

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Web sessions

U
til

iz
at

io
n

Extreme QS
QS

0 10 20 30 40 50

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Web sessions

Q
S

 B
yt

es
/A

ll
B

yt
es

Extreme QS
QS

Fig. 10. Basic Quick-Start and extreme Quick-Start with a
highly-tuned recent_qs_approvals parameter.

Moving Average Peak Utilization

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Web sessions

Q
S

 R
eq

ue
st

s
A

pp
ro

ve
d

(f
ra

ct
io

n)

w: 0.05 (~40 ms)
w: 0.005 (~400 ms)
w: 0.002 (~1000 ms)
w: 0.001 (~2000 ms)

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Web sessions

Q
S

 R
eq

ue
st

s
A

pp
ro

ve
d

(f
ra

ct
io

n)

3 slots (450 ms)
5 slots (750 ms)
10 slots (1500 ms)
20 slots (3000 ms)

0 20 40 60 80 100 120

0.
00

0.
02

0.
04

0.
06

Web sessions

Q
S

 F
ai

lu
re

s
(f

ra
ct

io
n)

w: 0.05 (~40 ms)
w: 0.005 (~400 ms)
w: 0.002 (~1000 ms)
w: 0.001 (~2000 ms)

0 20 40 60 80 100 120

0.
00

0.
02

0.
04

0.
06

Web sessions

Q
S

 F
ai

lu
re

s
(f

ra
ct

io
n)

3 slots (450 ms)
5 slots (750 ms)
10 slots (1500 ms)
20 slots (3000 ms)

Fig. 9. Comparison of moving average and peak utilization mechanisms.

P. Sarolahti et al. / Computer Networks 51 (2007) 1815–1832 1827

Aut
ho

r's

pe
rs

on
al

co

py

Quick-Start is slightly greater when Extreme Quick-
Start is used by the router to track each allocation
in detail. This scenario is certainly not typical, but
there could be some initial Quick-Start deployment
scenarios, such as in limited Intranets, where there
is a limited range of RTTs, and also where the traffic
and network characteristics could be accurately con-
figured. The figure shows that in such conditions,
with carefully tuned parameters, it is possible to
achieve nearly the same performance with basic
Quick-Start as with Extreme Quick-Start.

As a point of contrast we changed the computa-
tion of recent_qs_approvals to include the most
recent two 1.5-s intervals, to compare Extreme
Quick-Start with a basic Quick-Start router that
does not have a ‘‘typical’’ RTT and chooses a very
conservative setting (i.e., this setting results in few
Quick-Start failures, but also fewer Quick-Start
request approvals). Fig. 11 shows Quick-Start traffic
as a fraction of the total amount of data transmitted.
The figure shows that the fraction of bytes sent dur-
ing the Quick-Start phase of the connections is
greater when using Extreme Quick-Start. This illus-
trates Extreme Quick-Start’s power in terms of more
closely tracking resources so that more requests can
be approved. Therefore, Quick-Start involves less
wasted capacity, allowing more Quick-Start requests
to be approved. a The difference between basic
Quick-Start and Extreme Quick-Start in this figure
is larger than the difference shown in Fig. 10 due
to the more conservative setting for the length of
recent_qs_approvals. In this simulation the link utili-
zation with Basic Quick-Start and Extreme Quick-
Start was also nearly identical.

7. Deployment issues

The previous sections have shown that Quick-
Start has some potential to increase performance

without significantly impacting competing traffic.
We next turn our attention to several practical
issues that must be addressed before a working
Quick-Start system could be realized. Although we
discuss the issues from Quick-Start’s perspective,
many of the issues are more broadly applicable.

7.1. Chickens and eggs

Quick-Start is only of use when it is supported by
both end systems and all the routers along the path.
This leads to the ‘‘chicken-and-egg’’ deployment
problem, that there is little incentive to being the
first node to deploy Quick-Start. Because of the
incremental-deployment problems, we expect that
initial deployments of Quick-Start would happen
within networks or Intranets with centralized con-
trol, where hosts and routers both have an interest
in aiding performance.

7.2. Interactions with middleboxes

There are middleboxes in the current network
that drop packets containing known or unknown
IP options [16]. This could cause delays for connec-
tions using Quick-Start, as packets containing
Quick-Start requests would have to be retransmitted
without the request. Again, one consequence is that
initial deployments of Quick-Start may be in con-
trolled environments, where it is known that packets
with Quick-Start options would be forwarded.

7.3. Non-IP queues

A further deployment issue concerns the possibil-
ity of non-IP queues along a path. A router should
not approve Quick-Start requests if it cannot reli-
ably determine the link utilization all the way to
the next IP hop. What this would mean, in practice,
when there is an Ethernet switch, an ATM cloud, or
other non-IP queue between the IP router and the
next-hop IP router is left as future work.

7.4. Tunnels

IP tunnels are a challenge for a mechanism that
requires processing at every router. Some tunnel
implementations that do not know about Quick-
Start might encapsulate a packet without decre-
menting the inner IP TTL field first at the tunnel
ingress. As a result, a seemingly-valid Quick-Start
Request with an unchanged TTLDiff is carried in

0 10 20 30 40 50

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Web sessions

Q
S

 B
yt

es
/A

ll
B

yt
es

Extreme QS
QS

Fig. 11. Basic Quick-Start and extreme Quick-Start with a
conservative recent_qs_approvals parameter.

1828 P. Sarolahti et al. / Computer Networks 51 (2007) 1815–1832

Aut
ho

r's

pe
rs

on
al

co

py

the inner header, while the outer header most likely
does not carry a Quick-Start Rate Request. If the
tunnel egress decapsulates the packet without mod-
ifying the inner IP TTL field or otherwise rejecting
Quick-Start, it is possible that the Quick-Start
Request would be falsely approved. This problem
would be shared by any protocol that requires pro-
cessing at every router (e.g., XCP), and also presents
a consideration for the design of future tunnel
protocols.

The difficulties of incremental deployment and
the problems of middleboxes, coupled with the
potential problem of attacks on Quick-Start band-
width discussed in Section 8, suggest that Quick-
Start could remain in controlled networks for quite
some time, where the incremental-deployment barri-
ers are reduced, the range of middleboxes is under
more control, and attack traffic can more easily be
monitored and controlled. In addition, in such a
controlled environment, it is likely that all of the
routers along a path would support Quick-Start,
reducing the problem of Quick-Start requests that
are denied simply because of routers that are not
Quick-Start capable. It is possible that Quick-Start
would remain a mechanism largely for use in con-
trolled environments, and would never see ubiqui-
tous deployment in the global Internet.

8. Attacks on Quick-Start

8.1. Threats

Quick-Start is vulnerable to denial-of-service
attacks along two vectors: (i) increasing the router’s
processing and state load and (ii) using bogus
Quick-Start requests to temporarily reduce the
available Quick-Start bandwidth. Since Quick-Start
requests represent a potential processing burden for
routers, a storm of requests may cause a router’s
load to increase enough to affect legitimate traffic.
Given the processing burden imposed by Quick-
Start, this could well be worse than a simple packet
flooding attack. A simple limit on the rate at which
Quick-Start requests are considered (with a policy
of ignoring requests sent in excess of this rate) mit-
igates this attack on the router itself. In the case of
Extreme Quick-Start another problematic aspect of
a storm of packets is the memory requirement to
track bogus ‘‘connections’’.

The second type of attack, an attack on the avail-
able Quick-Start bandwidth, is more difficult to
defend against. In this attack arbitrarily large

Quick-Start requests are sent by the attacker
through the network without any further data trans-
mission. With a relatively low-rate stream of pack-
ets, this can cause a router to allocate capacity to
the attacker and thus temporarily reduce the
amount of capacity that can be allocated to legiti-
mate Quick-Start users. Note that the attack does
not actually consume the requested bandwidth and
therefore the performance of competing connections
is no worse than connections that simply do not
make use of Quick-Start. However, these attacks
are particularly difficult to defend against, for two
reasons. First, the attack packets do not have to
belong to an existing connection to do damage.
And, second, since the attack just involves a
Quick-Start request traversing the network path in
one direction only to trigger bogus allocations, a
response is not required. Therefore, spoofed source
addresses are a possible aggravating factor for both
hiding the origination of the attack and causing a
simple blacklisting defense to fail.

An additional problem with Quick-Start is that
legitimate requests could well cause the same impact
as attack packets. Consider a Quick-Start request
for rate R that is approved, and therefore consid-
ered ‘‘allocated’’, by the first router in the path.
Now assume the same request hits a downstream
router that reduces the rate to some R 0 less than R
(maybe even to zero) for whatever reason. In this
case, the first router has needlessly allocated some
amount of Quick-Start capacity that cannot be
given to subsequent Quick-Start users because of
the conditions elsewhere in the network. From the
vantage point of the first router, this is similar to
the attack described above in that capacity allocated
for Quick-Start goes unused, while the router’s abil-
ity to approve further Quick-Start requests is
reduced.7 One possible use of Extreme Quick-Start
would be to allow routers to reduce Quick-Start
requests from senders that have in the past used
only a fraction of their approved Quick-Start
bandwidth.

In addition to Denial of Service attacks, a simple
implementation of Quick-Start could be vulnera-
ble to cheating by routers or by end-nodes.

7 At first glance, allowing the router to watch the Quick-Start
responses offers more information. However, due to asymmetric
routing we cannot assume that a router will see the Quick-Start
responses. In addition, an arbitrary router has no way to tell if
the TTLDiff0 in the response is valid and therefore whether the
sender will ultimately make use of the response.

P. Sarolahti et al. / Computer Networks 51 (2007) 1815–1832 1829

Aut
ho

r's

pe
rs

on
al

co

py

Non-conformant routers or hosts might try to mod-
ify Quick-Start messages to benefit particular con-
nections. For instance, a receiver could increase
the rate given in an arriving Quick-Start Request
before echoing it back to the sender, in an effort
to increase the connection’s performance. Similarly,
a router close to the sender and acting on the sen-
der’s behalf (a ‘‘performance booster’’) could
increase the approved sending rate and/or adjust
the reported TTLDiff 0from the receiver to match
the original TTLDiff in an effort to mask the net-
work’s lack of Quick-Start savvy. Mitigations for
these and other attacks are discussed in the follow-
ing section. We also note that such cheating would
risk hurting instead of helping performance; lying
about the size of the approved rate request could
end up causing packet drops for Quick-Start pack-
ets, resulting in a slow-start for the connection in
question.

8.2. Mitigations

In some sense, a number of the problems
described above are fundamental to a lightweight
system that does not require authentication of
requests or per-flow state at all nodes in the network
path. For instance, when a router observes a SYN
packet with a Rate Request, how is that router to
know if this is a spoofed packet or a legitimate
request to establish a connection with a larger-
than-standard sending rate?

A first mechanism to mitigate the problems is for
senders to advertise their sending rate during the
round-trip time after a valid Quick-Start request,
as specified in [9]. With a small amount of per-flow
state, this could allow routers to adjust their notion
of the amount of Quick-Start capacity that has been
‘‘allocated’’. In other words, if a flow requested and
was approved for R1 bps at a given router and then
advertised some R2 bps as their sending rate, the
router could decrease its record of ‘‘allocated’’
Quick-Start bandwidth by R1–R2. This would miti-
gate the problem of overly large requests consuming
Quick-Start resources that will not be able to use
due to downstream limits.

Another possible addition would be of a ‘‘two
pass’’ structure. In this scheme, a first request would
be sent as usual. Assuming a valid rate R is
returned, the sender could then send a second
request for rate R through the network for verifica-
tion (and tagged as such). During this second pass
the routers could not reduce the rate, but could

reject the use of Quick-Start for the flow. Also, dur-
ing this second pass the routers could change a
‘‘provisional’’ allocation into a ‘‘confirmed’’ alloca-
tion. As above, this mechanism could be used to
reduce the problem of downstream rate reductions
that invalidate an upstream router’s estimate of
allocated Quick-Start bandwidth. In addition, this
mechanism would reduce the impact of spoofing
senders; if the rate given in the second pass is larger
than the rate approved by the router from the first
pass then the request will not be confirmed by the
router, and the router could update its estimate of
allocated Quick-Start bandwidth. A malicious,
non-spoofing sender would still be able to request
Quick-Start bandwidth without using it. However,
this is a more tractable case since a non-spoofed sen-
der would be identifiable, and therefore policy could
be applied to its traffic.

Finally, a nonce can be used to catch receivers
trying to game Quick-Start, as specified in [9]. Sup-
pose that the rate in each request is encoded in N

bits in the packet header, allowing for 2N � 1 rates
to be encoded. Now, suppose a nonce field of length
X · (2N � 1) is included in the request and initial-
ized to a random value. For each decrement of the
rate from Y to Y � 1, a particular X-bit portion of
the nonce would be overwritten by a random value.
As an example, a 4-bit encoding of the rate request
could take on 15 non-zero rates. A minimum sized
nonce would be 15 bits in length. When a router
decremented the request from 15 to 14, the router
would set the first bit in the nonce field to a random
value; similarly, a router decrementing the request
from 14 to 12 would set the second and third bits
of the nonce to random values. The receiver would
echo back the nonce to the sender in its reply to the
rate request. The sender would then be able to verify
that the reported rate request corresponded to the
unchanged portions of the nonce. The nonce would
largely prevent receivers from lying about the rate
that arrived. Even if the receiver knows the original
rate request (which is not a given), the chances of
the receiver correctly guessing the original nonce
to ‘‘prove’’ that the rate was not reduced below that
in the network would be 1

2X � S for a rate that was
reduced S steps in the network.

None of the above mechanisms remove the fun-
damental tension between having a lightweight
scheme to determine if a network path can support
an increased sending rate on the one hand, and hav-
ing a scheme that is immune from malicious behav-
ior on the other. However, the combination of

1830 P. Sarolahti et al. / Computer Networks 51 (2007) 1815–1832

Aut
ho

r's

pe
rs

on
al

co

py

several of these schemes may well offer enough mit-
igation to make Quick-Start practical in some pro-
duction networks (even if not in the Internet itself).

9. Conclusions and future work

In this paper, we explore a mechanism for anti-

congestion control, where the task is not to detect
and respond to congestion, but to determine when
the sender can use a higher sending rate than it
would otherwise. We present the first well-rounded
study of Quick-Start, and show that with only min-
imal additional router state and processing and an
additional request upon connection setup, transfer
times for medium-sized files can be reduced signifi-
cantly in an uncongested network. While Quick-
Start can aid per-connection performance, it does
not lead to higher drop rates in the network,
because Quick-Start requests are only approved
when the network is underutilized. Thus, while
Quick-Start can help users in an underutilized net-
work, it should have little or no effect in a congested
network.

We have also explored the downsides of Quick-
Start, including thorny deployment considerations
and security problems. We have sketched potential
mitigations for some of these problems in this
paper, but additional design and experimentation
will be required before Quick-Start will be useful
in the global Internet (if it ever will be). However,
Quick-Start may be of use on networks under the
control of a single organization, which could benefit
from Quick-Start while at the same time shedding
some of the thorny problems (e.g., security threats)
presented when multiple administrative domains
come into play.

In this paper we have not attempted a perfor-
mance comparison between Quick-Start and the
other proposals discussed in Section 2. Some of
the proposals are not suited for sending an entire
transfer at 1 Gbps in the first round-time after con-
nection set-up; we believe that such behavior
requires explicit permission from all of the routers
along the path.

We also have not attempted a comparison
between Quick-Start and the proposals for new con-
gestion control mechanisms based on explicit feed-
back from routers (Section 2). Quick-Start is
simpler, and considerably less powerful, than com-
plete congestion control mechanisms. Our expecta-
tion is that new congestion control mechanisms
such as XCP or VCP will encounter some of the

same deployment issues faced by Quick-Start in
terms of IP tunnels, middleboxes, attackers, and
the like. There is some literature on these issues,
and we have not attempted our own analysis. We
consider a performance comparison between
Quick-Start and some of the proposed mechanisms
for congestion control with explicit feedback, as
well as the detailed analysis of deployment and secu-
rity issues in the different schemes, as a topic of
future research.

While this paper only considers the use of Quick-
Start in determining a connection’s initial sending
rate, another fruitful area of work is to explore
the use of Quick-Start after idle periods or mobility
events, when a connection is significantly under-uti-
lizing the network path or has no understanding of
the path’s characteristics. Other areas of future
work are to consider the use of Quick-Start with
other transport protocols, and to explore in more
detail algorithms for setting the size of Quick-Start
requests at end-nodes and processing Quick-Start
requests at routers. We expect other issues for future
work to also arise with the experimental deployment
of Quick-Start in small controlled networks.

Acknowledgements

Amit Jain first presented the Quick-Start idea.
Srikanth Sundarrajan developed the initial Quick-
Start implementation for ns-2 based on the first
Internet-Draft. This work has benefited from dis-
cussions with and reviews from a list of people too
long to enumerate. Our thanks to all! This material
is based in part upon work supported by the Na-
tional Science Foundation Under Grant No.
0205519. Any opinions, findings, and conclusions
or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect
the views of the National Science Foundation.

References

[1] NS Simulator. URL <http://www.isi.edu/nsnam/ns/>.
[2] M. Allman, S. Dawkins, D. Glover, J. Griner, J. Heidemann,

T. Henderson, H. Kruse, S. Ostermann, K. Scott, J. Semke,
J. Touch, D. Tran, Ongoing TCP research related to
satellites, RFC 2760, February 2000.

[3] M. Allman, S. Floyd, C. Partridge, Increasing TCP’s initial
window, RFC 3390, October 2002.

[4] M. Allman, V. Paxson, On estimating end-to-end network
path properties, in: Proceedings of the SIGCOMM ’99,
September 1999.

[5] H. Balakrishnan, S. Seshan, The congestion manager, RFC
3124, June 2001.

P. Sarolahti et al. / Computer Networks 51 (2007) 1815–1832 1831

Aut
ho

r's

pe
rs

on
al

co

py

[6] T. Berners-Lee, R. Fielding, H. Frystyk, Hypertext transfer
protocol – HTTP/1.0, RFC 1945, May 1996.

[7] R. Braden, L. Zhang, S. Berson, S. Herzog, S. Jamin,
Resource ReSerVation Protocol (RSVP) – version 1 func-
tional specification, RFC 2205, September 1997.

[8] L. Breslau, S. Jamin, S. Shenker, Comments on the
performance of measurement-based admission control algo-
rithms, in: Proceedings of the Infocom 2000, March 2000.

[9] S. Floyd, M. Allman, A. Jain, P. Sarolahti, Quick-Start for
TCP and IP Internet-draft ‘‘draft-ietf-tsvwg-quickstart-
06.txt’’, August 2006 (Work in progress).

[10] S. Floyd, E. Kohler, Internet research needs better models,
in: Proceedings of the HotNets-I, October 2002.

[11] V. Jacobson, Congestion avoidance and control, in: Pro-
ceedings of the SIGCOMM ’88, August 1988.

[12] H. Jiang, C. Dovrolis, Passive Estimation of TCP Round-
Trip Times, ACM SIGCOMM Computer Communication
Review 32 (3) (2002).

[13] D. Katabi, M. Handley, C. Rohrs, Congestion control for
high bandwidth-delay product networks, in: Proceedings of
the SIGCOMM 2002, August 2002.

[14] S. Keshav, A control-theoretic approach to flow control, in:
Proceedings of the SIGCOMM ’91, September 1991, pp. 3–
15.

[15] S. Kunniyur, AntiECN marking: a marking scheme for high
bandwidth delay connections, in: Proceedings of the IEEE
ICC ’03, May 2003.

[16] A. Medina, M. Allman, S. Floyd, Measuring interactions
between transport protocols and middleboxes, in: Proceed-
ings of the SIGCOMM/USENIX Internet Measurement
Conference, November 2004.

[17] V. Padmanabhan, R. Katz, TCP fast start: a technique for
speeding up web transfers, in: Proceedings of the IEEE
Globecom, November 1998.

[18] R. Pang, M. Allman, M. Bennett, J. Lee, V. Paxson,
B. Tierney, A first look at modern enterprise traffic,
in: Proceedings of the SIGCOMM/USENIX Internet
Measurement Conference, October 2005.

[19] C. Partridge, D. Rockwell, M. Allman, R. Krishnan,
J. Sterbenz, A Swifter Start for TCP. Technical Report
8339, BBN Technologies, 2002.

[20] J. Postel, Transmission control protocol, RFC 793, Septem-
ber 1981.

[21] R. Prasad, M. Murray, C. Dovrolis, K. Claffy, Bandwidth
estimation: metrics, measurement techniques, and tools,
IEEE Network (Nov/Dec) (2005).

[22] K. Ramakrishnan, S. Floyd, D. Black, The addition of
explicit congestion notification (ECN) to IP, RFC 3168,
September 2001.

[23] E. Seurre, P. Savelli, P.-J. Pietri, EDGE for Mobile Internet,
Artech House, 2003 .

[24] S. Sundarrajan, J. Heidemann, Study of TCP Quick-Start
with NS-2, Unpublished Report, University of South Cal-
ifornia, 2002.

[25] Y. Xia, L. Subramanian, I. Stoica, S. Kalyanaraman, One
more bit is enough, in: Proceedings of the SIGCOMM 2005,
August 2005.

[26] P. Young, in: Recursive Estimation and Time-Series Anal-
ysis, 1984, pp. 60–65.

Pasi Sarolahti received the M.Sc. degree
in computer science from the University
of Helsinki in 2001. He worked as a
research assistant and researcher in the
University of Helsinki from 1999 to
2002. Since March 2002 he has been at
the Nokia Research Center, where he
currently works as a Senior Research
Engineer. Sarolahti is doing his Ph.D.
studies on analysis of TCP performance
in wireless networks and multi-access

mobile systems.

Mark Allman is a senior scientist with the
International Computer Science Institute
(ICSI). His current research work is in
the areas of transport protocols, con-
gestion control, network measurement,
network security and architecture. Prior
to his appointment at ICSI, he con-
ducted research on internetworking in
satellite networks for BBN Technologies
at NASA’s Glenn Research Center. He is
a member of the ACM and holds B.S.

and M.S. degrees in computer science from Ohio University.

Sally Floyd received the B.A. degree in
sociology, with a minor in mathematics,
from the University of California at
Berkeley in 1971. From 1975 to 1982 she
worked on computer systems for Bay
Area Rapid Transit (BART). She
received the M.S. and Ph.D. degrees
from the University of California at
Berkeley in 1987 and 1989, respectively,
in computer science. From May 1990 to
January 1999, she was a member of the

Network Research Group at Lawrence Berkeley National Lab-
oratory. Since February 1999, she has been at the Center for
Internet Research at the International Computer Science Institute
(ICSI). Her research interests include congestion control in
computer networks and the analysis of network dynamics.

1832 P. Sarolahti et al. / Computer Networks 51 (2007) 1815–1832

