An Architecture for Seamless Access to Multicast Content

Pieter Liefooghe, Marnix Goossens
Vrije Universiteit Brussel, INFO/TW Tele.Com
{Pieter, Marnix}@jinfo.vub.ac.be

Abstract

In this paper we describe an architecture, which
allows transparent access to the multicast
infrastructure even when not directly connected to
it. In that context, we introduce the concepts
dynamic tunnel server location and Rate-Based path
characterization. We propose changes to UMTP in
order to allow dynamic tunnel server location
through firewalls. We present dynamic congestion
discovery with an associated tunnel hand-over
mechanism. The features of a session directory
application, which integrates the dynamic tunnel
mechanism, is shown. The concept of “channels”
for session announcements is introduced. And
finally we present a SAP/SDP proxy location and
query mechanism.

1. Introduction.

IP multicast [1] is an efficient method to do one-to-
many and many-to-many communication. It is efficient in
the sense that in order to distribute data to multiple
receivers we only have to send one copy of the data; this
compared to the unicast case where we have to send a
copy for each individual receiver.

A quite extensive protocol set (IGMP, DVMRP,
PIM-SM, PIM-DM, MSDP, MBGP, BGMP) has been
developed in the IETF, to build up an efficient
distribution tree between the sender and the receivers. The
majority of the router vendors are gradually supporting
these protocols. So we could conclude that by now a large
part of the Internet would be multicast enabled. But
currently we see that the deployment is not going as fast
as one could normally expect.

The major reason for this is that we are here in some
sort of two-fold deadlock situation with problems situated
at three parties:

The first party involved are the ISPs. As described by
Diot C. et al. [2], ISPs are reluctant to deploy IP multicast
because it relies on a protocol architecture that requires

more setup and administration than the unicast
architecture. This makes that in order for a multicast
solution to be cost efficient one will need potentially a
large number of multicast capable customers.

The second party are the customers. Only a minority
of users knows about multicast and the potential benefits
this technology could bring them. From queries in popular
software archives (e.g. winfiles.com) one could falsely
conclude that there is almost no software available that
supports multicast. Although quite popular applications
like RealPlayer, Quicktime Player, FreeAmp etc. do
support multicast. Since it is for consumers not all that
clear what multicast is about and what they can do with it,
they won’t be asking their ISPs to get multicast.

The content providers are the last group involved.
Although the use of multicast could result in a huge
bandwidth saving, content providers are not eager to
invest in this new technology, because there are almost no
“consumers” for this type of content.

From the above it is clear that in order for IP
multicast to become ubiquitous we need to try to provide
as many end-users with a multicast “connection”.

The work described in this paper situates in breaking
this deadlock situation. A mechanism, which allows an
Internet user with enough access bandwidth to access
multicast content even when not connected to a multicast
enabled ISP is described. In this manner we increase the
multicast-audience and hence make it more attractive for
content providers to deploy this bandwidth-saving
technology. At the same time, when we reach the “critical-
mass” of multicast capable end-users, ISPs will be more
willing to deploy multicast.

The basic idea behind our solution is that it is
possible to encapsulate (tunnel) the multicast packets in
unicast packets between the portion where we do have
multicast and the end-user.

We want this tunneling to be fully transparent for the
user. This means that the user simply has to choose a
multicast session and that the system should dynamically
locate the best tunnel end-point and tunnel the multicast
data between the multicast-enabled part and the client.
Further, in the case of congestion on the path between the
tunnel server and the end-user a session hand-over can be
performed. As a result of this research, a prototype was
created which supports the above-mentioned techniques

and additional features to enhance the multicast
experience for the end-user.

Tunnel Server

Unicast tunnel ’

|

Tunnel Client

Figure 1: Tunneling of IP multicast packets.

2. Application level tunneling.

This research started by evaluating the possible
mechanisms to tunnel multicast data between the
multicast-enabled part of the Internet and an end-user. It
was found that some work had already been performed by
Peter Parnes with mTunnel [3] and by Ross Finlayson
with the UDP Multicast Tunneling Protocol (UMTP) [4].

Both solutions are based on the concept of
application level tunneling. In this approach tunneled data
is sent over a UDP unicast “connection” between the two
tunnel endpoints. The client uses some sort of control
channel to indicate to the server which multicast address
and port number to join. All data received on this
multicast channel is then encapsulated in UDP datagram
packets and sent to the client. Clients will decapsulate and
multicast the received packets locally. The same
mechanism is used in the other direction, which makes bi-
directional communication possible.

The client applications, however, must satisfy the
following conditions:

e Their multicast packets must use UDP.

e The tunnel endpoint must have a way of knowing
each (group, port) that the application uses.

e The application must not rely upon the source address
of its incoming multicast packets. In particular, the
application must not use source addresses to identify the
original data source(s).

Most multicast-based applications - especially those
based on RTP [5] satisfy these requirements.

This application level tunneling has the big advantage
that no special privileges are needed to run the application
and that there is no need for kernel-level access as
compared to kernel-level tunneling solutions like
implementing a full-blown routing protocol like DVMRP
[6].

0 1 2 3

01234567890123456789012345678901

| (IPv4) multicast address |

Figure 2: UMTP Packet Trailer.

The two application level tunneling solutions use
trailers rather than headers. This has the big advantage
that, since the encapsulated data, will often be an RTP
packet, by retaining this data in its usual position;
IP/UDP/RTP header compression [7] - if present - will
work properly. A secondary reason is that this order may
allow application level tunneling implementations written
in some type-safe programming languages - such as Java -
to reduce the amount of byte copying that they would
otherwise have to perform.

The difference between both solutions is that UMTP
uses the multicast address and port numbers in each
packet to uniquely identify a tunneled multicast channel,
compared to the more efficient method of using a flow
identifier in mTunnel.

Both use a different approach to setup the tunneling
of a given session:

With mTunnel one has to use a web browser to
connect to the local tunnel endpoint and use this to
indicate which session to tunnel. The user has to manually
launch the tools or use a session directory tool like Sdr
[8]. We also need to use the web browser to explicitly
terminate the tunneling of a session when we no longer
want to attend a session.

UMTP on the other hand is integrated in a session
directory tool called Multikit, which makes it possible to
simply double click a session announcement to establish
the tunneling and to launch the associated tools. The
tunneling of a session needs to be terminated explicitly.

Both solutions have as drawback, that the user needs
to know in advance the tunnel server and that an explicit
tunnel termination is required.

After evaluation of the different approaches it was
recognized that UMTP was suited for our purpose
especially by the fact that this protocol is fully
documented in [4] compared to only a high-level
description of the mTunnel protocol in [3].

3. Dynamic tunnel server location.

It is clear that if we want to have a user-friendly
application, we cannot expect the user to know which
tunnel server to use. Further, if we would statically
configure a list of servers it would not be feasible for an
average end-user to decide which tunnel server would be
the best. Hence we need to devise a dynamic and fully
transparent mechanism to locate the “best” server for a
given client. Here we chose to implement a separate
protocol rather than to augment the UMTP protocol with
some extra negotiation component.

We introduced the concept of Tunnel Regions in
order to enhance the scalability of the tunnel server
location. As Tunnel Regions we defined: local, country
and regional. With local we indicate tunnel servers
located in the corporate/ISP network; with country we
indicate all tunnel servers located in a given country and
with regional we indicate the tunnel servers located in the
neighboring countries. E.g. all tunnel servers in Europe
for a client located in the UK.

The idea is that a client will try to look first for tunnel
servers in its own network and expand to the country if
none is found. If there none is found, one in the region
will be used.

The country and the (sub)network(s) to which a
server belongs are indicated at installation of the server.
Once a server starts, it registers this information in a
central tunnel database. At server shutdown, a
deregistration is performed. This database hence contains
all available servers and an indication for what network(s)
and for which country they are willing to act as tunnel
server. The region is inferred from the country. A client is
also configured with the country of the end-user. This
information, combined with the IP address of the client is
then used to query this central database using the
following criterion:

First a match between the client’s IP address and the
registered (sub)networks of the tunnel servers is tried,
using longest prefix matching. If no match is found, a
match at the level of the country is attempted; if no match
is found a query at the level of the region is performed. A
“default” tunnel server is returned if no match is found.

In our prototype we chose to use HTTP GET
interactions [9] as the basis for the queries/registrations in
the tunnel database because of its very simple nature. We
are currently investigating how we can replicate the
registration information among different tunnel database
servers as to come to a more reliable architecture.

When we have located multiple potential tunnel
servers we still need to “measure” which server is best
suited for handling the client. If the query only resulted in

one server, we simply set up a UMTP tunnel with this
particular server.

In the case of multiple endpoints, the following
sequence of operation is carried out: first a temporary
UMTP tunnel is set up with the tunnel server that was
used in a previous run, if this server is member of the list
of potential servers or with a randomly chosen server if
the previously used server is not present in the list.
Through this tunnel it is already possible to join some
multicast sessions. While the tunneling of these sessions is
happening, we try to figure out which server is best suited
for acting as final tunnel server.

3.1. Path characterization.

In one of our initial prototypes we used a “fixed”
multicast address to communicate from the client, through
the temporary tunnel, with the different servers in the
“nearest” region. Through this “channel” a tunnel request
message with suitable TTL was sent which triggered the
tunnel servers to start to perform a characterization of the
path between the server and the client. The problem with
this solution was that there is a high probability, that
multiple servers will perform their measurements at the
same time. This had as effect that the measurements of the
servers were negatively influenced by each other. We can
minimize this effect by starting the measurement not
immediately at receipt of the tunnel request message but
only after some random time. But even with this approach
we see that there is a negative influence even when we
take quite a large value for the random timer interval. This
is mainly due to the fact that the characterization of the
path is taking some time to finish.

This is why we chose to let the client do all the
characterizations. The client will set up “dummy” UMTP
tunnels towards all the servers one after the other.
Through such a tunnel a special “test channel” is joined.
The tunnel server will act differently for this test channel
compared to “normal” channels in the sense that all traffic
sent towards this special channel is looped back towards
the client. For the characterization, we start sending, on
this test channel, UDP packets with a size of 512 bytes
(+/- average size of packets in a session).

It is clear that when we want to do a measurement, we
want this measurement to be the least intrusive as
possible. Since our measurement is based on the sending
of UDP packets and that we know that UDP traffic is very
unfriendly to TCP traffic we need to make our
measurement “TCP-Friendly”. We decided to add a
“Rate-Based Flow Control” mechanism based on the work
described in [10, 11]. In this mechanism, the rate at which
packets are sent is controlled by the degree of packet loss
and by the round trip time. In order to make the path

characterization rate-based we added a header with
several fields to carry the sequence number and the
acknowledgements. We also added redundant information
to the ACK stream in order to specify the last hole in the
delivered sequence number space and to accommodate for
single ACK losses, as described by Rejaie et al. in [11].
Which results in the following header fields:

1. Sequence Number: sequence number of the data
packet on which this ACK is piggybacked or the sequence
number of the previously sent packet when no data is
present.

2. Current ACK: the sequence number of the packet
that we just received and that we are acknowledging.

3. Missing ACK: The sequence number of the last
packet before the Current ACK that was still missing, or 0
if no packet was missing.

4. Last ACK: The sequence number of the last packet
before Missing ACK that was received, or 0 if Current
ACK was the first packet.

The Inter-Packet-Gap (IPG) i.e. the time between
two consecutive messages is evaluated every SRTT.
SRTT is the smoothed version of the measured round trip
time. The formulas used to come to a TCP-friendly
characterization are given below and are based on the
Jacobson/Karel’s algorithm:

Difference = MeasuredRTT - SRTT;
SRTTj; = SRTT; + (d * Difference)
Deviation = Deviation + d (|Difference| - Deviation))

Where d = 1/8.

We know that there are packets lost when explicitly
indicated by the Missing ACK field or implicitly after:

Timeout = SRTT; + 4 * Deviation

The control of the IPG is based on the Additive
Increase and Multiplicative Decrease (AIMD) algorithm:
In the absence of packet loss, we decrease IPG according
to:

IPGi+1 = (IPC]1 * SRTTI)/(IPGI + SRTTI)

In case of packet loss we double the Inter-Packet-
Gap:
IPGi+1 =2 * IPC]1

We continue to send packets during 3 seconds or until
we have sent a total of 50 packets. The obtained
parameters are then combined into a metric using the
following formula:

M = 50%(1 - Loss/10)+40*(Bandwidth —
Throughput)/(Bandwidth) + 10*(SRTT/2000 ms.)’

Where Loss = average packet loss (%); Bandwidth =
Upstream Bandwidth of the client’s Internet access;
Throughput = Throughput expressed in Bytes Per Second;
SRTT = the value of SRTT at the end of the measurement,
expressed in milliseconds. The result of this calculation is
a number between 0 and 100. The lower the metric the
better the path. From the formula of the metric we see that
the principal parameter is packet loss. When we encounter
during our measurement packet losses in excess of 10%
we simply stop the measurement, this because at such high
loss rates the tunneled media (especially Audio and
Video) becomes unusable. The next important parameter
is the throughput; ideally it should reach the maximal
bandwidth of the access device. Finally as the least
important factor we use the smoothed RTT, because it is
felt that although delay is important - especially in an
interactive session - we see that most multicast
applications available now are made for one-way
communications i.e. streaming and are hence less affected
by high delay paths.

The client will know through this mechanism which
server has the best metric. If the server with the best
metric is different from the temporary tunnel server a
tunnel hand-over procedure is started.

If two or more offers have an identical metric, one at
random is selected. Once the client has chosen the
appropriate server, a UMTP tunnel is set up with this
server.

From the moment we start to receive data on a joined
channel we stop the tunneling of that channel on the
temporary server. We continue to do this until we no
longer have any “temporary” sessions open. Finally we
close the UMTP session with the temporary server. From
this point on we tunnel from the new tunnel server.

4. Dynamic tunneling and firewalls.

Since all our communication is based on the UMTP
protocol and in view of the fact that the UMTP protocol
only uses a fixed UDP port it is easy to configure a
firewall for traversal of tunneled multicast. But it has as
big disadvantage that the dynamic tunneling is made
impossible because in the firewall one has to define a
fixed mapping between the tuple (firewall IP address and
port) and a tuple (UMTP Server IP address and port).

By use of a UMTP Proxy module in the firewall or as
process running on a machine in the “Demilitarized
Zone”, one could “restore” the dynamic capabilities. For

! Loss is limited to 10% and SRTT is limited to 2000ms.

this we need to add proxy functionality to the UMTP
protocol. This can be achieved by defining a new
command called PROXY, which still uses the same trailer
layout (see Figure 2) as all the other UMTP packets. But
we change the interpretation of the field “(IPv4) multicast
address”, which will now contain the IP address of the
tunnel server and the “Port” field will contain the port of
the tunnel server to contact. All other fields remain
unused. This proxy message will be sent as the first
message in the UMTP communication between the client
and the firewall/proxy. From the moment the proxy
received this message it knows that it needs to forward all
messages to the tunnel server defined in the PROXY
command. This forwarding continues until the proxy
encounters the TEAR_ DOWN message.

5. Dynamic congestion discovery and tunnel
hand-over.

It is very well possible that the path between the
UMTP tunnel server and the client gets congested. It
would be nice that in such a situation a hand-over to a new
and “better” server could be made. Before this is possible
a mechanism to detect the degree of congestion should be
available. A possible way to achieve this is by modifying
the UMTP protocol in such a way that some sequence
number is incremented for each new packet tunneled (the
RTP sequence number can’t be used for this purpose
because there could already be missing packets before
they were tunneled) When the percentage of missing
sequence numbers (and hence packets) exceeds a certain
level (e.g. 5%) a new tunnel server discovery round could
be started in order to locate a better server.

6. New generation session directory.

Initially we developed the dynamic tunneling
protocol in order to incorporate it with new applications.
But it was recognized that there are many applications
currently available which would not be able to benefit
from the transparent tunneling capabilities of our solution.

This is why we decided to implement our own session
directory application and to integrate the dynamic
tunneling in it. This application listens on a “reserved”
multicast address for announcements by the different
content providers. Such an announcement is a
combination of Session Announcement Protocol (SAP)
[12] packets with Session Description Protocol (SDP)
[13] packets as its content. The SAP protocol is quite
simple in the sense that it is only used to “carry” SDP
packets and that it provides a mechanism for encrypting
the SDP packet and/or an authentication mechanism.

The SDP protocol on the other hand will carry
detailed information about the session. It contains for
example the title of the session and a short description,
some contact information and scheduling information.

Further, for each media (Audio, Video, Whiteboard
etc.) present in a session we find a listing of multicast
addresses used and their associated port numbers. This
media specific information is then used to launch the
applications capable of processing these media types and
to establish the appropriate tunneling.

6.1. The channel concept.

While working on this session directory we identified
that a flat session listing as used by many session
directories, was unrealistic, especially when the number of
sessions becomes large. So we implemented the directory
concept as first introduced by Ross Finlayson and
described in [14]. But we also introduced the concept of
Channel. With this it is possible for a content originator to
announce all its sessions under a given “Channel Label”.
The difference with a directory is that only the creator of
the channel is “allowed” to announce sessions within this
channel. For this, we propose a new media type “channel”
and an attribute “cert”.

m=channel <port> SAP SDP
a=cert:<url>

<url>, is the URL pointing to the location where the
x509 or PGP certificate of the channel originator can be
downloaded.

The session announcement of the channel and all
session announcements within this channel will be
“signed” at the SAP level with the private key of the
channel originator. Only announcements with a valid
signature and corresponding with the root channel
certificate will be listed in the channel.

6.2. Universal tool launcher.

During the development cycle it was also recognized
that if we wanted to promote the use of multicast it would
be necessary to be able to launch as many multicast
capable applications as possible. These multicast capable
applications can be divided in to two categories.

The first category contains those applications where
all the information about the media/session to join, is
transferred to the application via command line options.
The mapping from the media parameters in the SDP
announcement to a command line is defined through the
use of plug-in files. In these small files we define for each

type of media what the formats are that a given tool
supports as well as the different command line options
that need to be used for a given set of entries in the SDP
announcement. Although the concept of plug-ins for use
in session directory applications is not new, we enhanced
it with new features like descriptions of the tools, human
readable names for the different media formats etc in
order to make it more user friendly.

The other mechanism for launching tools consists of
using an SDP file. We enhanced the session directory tool
so that (if indicated in the plug-in of the tool) all
parameters of a session are stored in an SDP file and that
the tool is launched with the name of this SDP file as
command line parameter.

Whenever for a media type no plug-in is found a
query is performed in a central database in order to locate
and download an appropriate plug-in. A query is also
performed in case an application defined in a plug-in is
not found on the client’s machine. In case a reference to
the tool can be found in the central database, a web
browser is launched pointing to the site where the tool can
be downloaded.

7. SAP/SDP proxy.

The session directory tool continuously listens for
announcements made by potential content originators.
This “announce-listen” mechanism has some major
drawbacks:

As described in [12], SAP announcements should be
made with an:

interval =max(300s ; (8*no_of ads*ad _size)/limit)

From this formula we can determine that the minimal
value for the interval equals to 5 minutes (300s).

This means that it takes at least 5 minutes to build up
a full list of session announcements. But it becomes even
worse in the case of packet loss. It is quite common to see
it take 10 or more minutes for a whole list to be built.

This also has a negative effect on the multicast
address allocation called Informed Partitioned Random
Multicast Address Allocation (IPRMA) as analyzed in
[16]. The IPRMA mechanism allows for a session
directory to locally generate a multicast address with
minimal chance that this multicast address will conflict
with another multicast address already in use. This scheme
depends on the allocator knowing a large portion of the
addresses already in use. If this is not the case the chance
for an address clash increases.

This problem can be lightened partially by
implementing a caching mechanism in the client. But to
solve this issue to the maximum extent, we chose to

implement a separate SAP/SDP proxy. This is a daemon
process, which actively listens on all announcements
being made (including those in directories and channels).
Now whenever a session directory tool starts it uses an
SAP/SDP Proxy discovery mechanism, based on
expanding disk search [16] in order to locate an
appropriate SAP/SDP Proxy for a given scope. We start
by sending query messages with a TTL of 1 and gradually
increase the TTL until we receive an offer or reach 63.
We limit the scope to 63 because we feel that, when
working within the global scope, it would be a waste of
network resources to query at the global scale. Seen the
fact that we gradually increase the TTL, we are resilient to
packet losses. In the query message we provide the TTL
value with which the packet is sent. A SAP/SDP Proxy,
which receives this query, will send back an offer on the
same multicast address as the one on which the query was
received. We use, in our prototype a negative offset of 3
from the upper bound multicast address of the
administrative or global scope.

This offer message indicates how many session
announcements within the queried scope have a TTL
larger or equal to the value of the TTL field in the query
message. It also contains the TTL value itself. Other
SAP/SDP Proxies will also send their offers unless their
“calculated” number of sessions is smaller or equal to the
ones already seen from other proxies. The session
directory tool will potentially receive multiple offers and
will take the best offer (the one with the highest number of
sessions and lowest TTL). If there are two with an
equivalent number of sessions the one that was received
first is chosen.

Once the session directory tool has decided about
which SAP/SDP Proxy to use, a HTTP GET command is
used to query for sessions with a TTL higher or equal to
the TTL value present in the best offer.

Rather than to specify a path based on directories and
filenames, we specify it based on the multicast address of
the scope/directory/channel we want to query.

GET /224.2.127.254/224.2.152.92/?TTL=12 ...

The query shown in this example would query for all
session announcements in the directory/channel
224.2.152.92, which is announced in the 224.2.127.254
scope. We provide the TTL value that was returned in the
offer i.e. 12 as argument to the query. We define a new
content-type application/sapstream for the “virtual” file
that will be transferred as a result of a successful query.
This virtual file contains the SAP packets delimited by a
4-byte header containing the length (in network order) of
the appended SAP packet. The client recursively queries
all subdirectories and/or channels.

We extended this architecture further in order to
make it possible to use the SAP/SDP Proxy as a remote
session announcer. For this we chose to use the HTTP
PUT command. This command provides the path on
which the announcement(s) should be made. The
announcements themselves are sent just after the PUT
command’s header as an application/sapstream file.
Deletion of an entry is achieved via a PUT command with
the original SAP message in the SAP stream, but where
the message type bit is turned on (i.e. delete).

Modification of an entry is done by a PUT command
where we provide an updated SAP message in the SAP
stream.

The URI for this command is formatted as indicated
below.

URI=<path>/<orig_addr.>?id=< session id>

Where <path> corresponds to the location,
<orig_addr> to the originator address and <session id> to
the session id from the SDP message.

The PUT command always contains login and
password information. This authentication information is
necessary in order to prevent others from modifying or
deleting an entry.

8. Conclusions and further work.

We described a network architecture, which allows
transparent access to the multicast infrastructure even
when not directly connected to it. We introduced the new
concepts: dynamic tunnel location and Rate-Based path
characterization. The changes that are needed to UMTP in
order to allow dynamic tunnel server location through
corporate firewalls were identified. The potential benefit
of dynamic congestion discovery and its related tunnel
hand-over mechanism was shown. A discussion was made
about a new generation of session directory tool, that
allows seamless access to various multicast sessions using
a wide variety of multicast applications and that integrates
the dynamic tunnel mechanism. The channel concept for
sessions was introduced and we presented how a
SAP/SDP proxy can be located and how it can be queried
to return session announcements in specific scopes,
directories or channels. Finally we identified and
described the methods to use the SAP/SDP proxy as a
remote session announcer.

We are currently working to integrate all these
concepts and prototypes into: a user-friendly session
directory, a multi platform UMTP tunnel server and a
SAP/SDP Proxy. We plan to investigate the possibilities
to apply rate-based flow control to the tunnels and we also
plan to develop a tool, which would allow an ISP to see

how many of their customers are tunneling and what
amount of bandwidth they are using.

9. References.

[1] Deering, S., “Host Extensions for IP Multicasting.”, Request
for Comments 1112, August 1989.

[2] Diot C. et al., “Deployment Issues for the IP Multicast
Service and Architecture”, IEEE Network, January 2000.

[3] Parnes P. et al., ’mTunnel: a multicast tunneling system with
a user based Quality-of-Service model”, IDMS, September
1997.

[4] Finlayson R., “UDP Multicast Tunneling Protocol”, draft-
finlayson-umtp-04.txt, June 1999.

[5] Schulzrinne H. et al., “RTP: A Transport Protocol for Real-
Time Applications”, Request for Comments 1889, January
1996.

[6] Waitzman D. et al., “Distance Vector Multicast Routing
Protocol”, Request for Comments 1075, November 1988.

[7] Casner S. et al., “Compressing IP/UDP/RTP Headers for
Low-Speed Serial Links”, Request for comments 2508,
February 1999.

[8] Handley M. et al., “sdr — A Multicast Session Directory”,
Unix manual page, University College London.

[9] Berners-Lee et al., “Hypertext Transfer Protocol --
HTTP/1.0.”, Request for Comments 1945, May 1996.

[10] Mahdavi J. et al., “TCP-friendly unicast rate-based flow
control”. Note sent to end2end-interest mailing list, January
1997.

[11] Rejaie R. et al. ” RAP: An end-to-end rate-based
congestion control mechanism for realtime streams in the
Internet”, Proc. IEEE Infocom, March 1999.

[12] Stephen J. et al., "A Real Time Protocol that Guarantees
Fairness with TCP", IEEE/ACM Transactions on Networking,
October 1997.

[13] Handley M. et al. “Session Announcement Protocol”, draft-
ietf-mmusic-sap-v2-06.txt, March 2000.

[14] Handley M. et al., “SDP: Session Description Protocol”,
Request for comment 2327, April 1998.

[15] Finlayson R., “The directory SDP media type*, draft-ietf-
mmusic-sdp-directory-type-00.txt, March 2000.

[16] Handley M., “Session Directories and Scalable Internet
Multicast Allocation”, Proceedings of ACM SIGCOMM,
September 1998.

[17] Swan A. et al., “Layered Transmission and Caching for the
Multicast Session Directory Service”, ACM Multimedia,
September 1998.

